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INTRODCUTION

 (Distributed) Sensor networks are deployed in a 
wide range of applications and environments. A 
sensor network is a distributed system given by a 
connected graph of communicating sensor nodes. 
Each sensor node measures physical 
properties of its local environment. 

 Sensor density increased exponentially and 
sensors are integrated systems („Smart 
Sensors“). 
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Assumption: Data in sensor networks is inherently distributed and must be 
processed locally on sensor node level: In-sensor Computation.

FlexSmell Project with silicon electronics on flexible substrates

Silicon
Electronics
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INTRODCUTION

 Digital computing based on the binary number system is the standard for any numerical 
computation since about 60 years. Digital computers are capable to perform highly complex 
numerical computations, with only a small set of instructions using high-level 
programming languages and compilers.

 With ongoing miniaturization, computation is integrated in sensors and devices towards 
material-integrated sensor networks (in-sensor computation). But the miniaturization towards 
the 1 mm3 scale reduces computational power and memory capacity significantly. 
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Hypothesis: Analog (electronic) circuits can perform numerical computations such 
as Artificial Neural Networks with lower ressources and electrical energy than 
digital circuits (and eventually faster).

(Left) MEMS for Distributed Wireless Sensor Networks, Warnecke et al. (Right) Smart Dust - Hitachi

Silicon
Electronics

Silicon
Electronics
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WHY ANALOG PROCESSING?

Sum-of-Product (SOP):
Digital: > 1000 Transistors
Analog: < 10 Transistors

Dynamic/Resolution f(x):
Digital: Discrete, 8-32 Bits 
Analog: Cont. > Noise 

Printed Organic Electronic:
10-100 Transistors / mm2

Digital: Not suitable
Analog: Suitable

Solving Diff. Eq.:
Digital: 1 s, 1 MB
Analog: 1 ms, 6 CapacitorsStart-up time:

Digital: 1 s (C)
Analog: 0
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ANALOG COMPUTERS: THE HIGH-PERFORMANCE CLASSICS...

 Digital: 
Discrete Value 
Distribution

 Analog: 
Continuous Value 
Distribution (t,s)

 Basic Model: 
Ideal Operational 
Amplifier

 Functional 
Composition: 
Wire Interconnect

 Parameters: 
Variable Resistors

 Technology: 
Silicon Electronics

Analog Computer EAI8800 (1986) with Hardware-in-the-loop!
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ANALOG COMPUTERS: THE ANCIENT!

Analog Computer EAI8800 (1993) with rust!

 Digital: 
Discrete Value 
Distribution

 Analog: 
Continuous Value 
Distribution (t,s)

 Basic Model: 
Ideal Operational 
Amplifier

 Functional 
Composition: 
Wire Interconnect

 Parameters: 
Variable Resistors

 Technology: 
Silicon Electronics
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ANALOG COMPUTERS: PROGRAMMABLE CHIPS - NEW AGE?

 Mixed-Analog-Digital: 
Semi- Continuous Value 
Distribution (t‘,s‘)

 Basic Model: Mixed A/D,
OPAMP, Transistors, 
AD/DA Conversion

 Functional Composition: 
Switched Matrix

 Parameters: 
Digital Resistors, 
Switched Capacitors

 Technology: 
Silicon Electronics

Field Programmable Analog Array Computer FPAA (2003-2024) on a chip! [Hasler et al..Okika dev.]
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ANALOG COMPUTATIONAL SYSTEMS: TAXONOMY
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ANALOG COMPUTATIONAL SYSTEMS: TAXONOMY
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Analog Computation

Static Design Dynamic Design  Design Domain

PCB/Discrete Printed Microchip Printed
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Filter/Blocks

AdaptableOPAMP

Transistors

Transistors

Silicon Organic Silicon Organic



Sysint 2025 Conference - Stefan Bosse

ANALOG COMPUTATIONAL SYSTEMS: TAXONOMY
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Parameters
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ANALOG COMPUTATIONAL SYSTEMS: OPAMP MODEL
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 The Operational Amplifier (OPAMP) is the basic cell of any accurate analog computational 
system!.

 An OPAMP is a difference amplifier with an inverting and a non-inverting input i+ and i-, respectively. 
There is one output o.

 An OPAMP can implement a(ny) (perhaps time-dependent) function y=f(x) by adding up to 7 functional 
blocks (e.e., resistive) defining the transfer function of the entire circuit: 

IB: Input Block
OB: Output Block
GB: Ground Block
FB: Feedback Block

FB+

FB-

IB+

IB-
OB

GB+

GB-

 x+

 x-
 y

+

-
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ANALOG COMPUTATIONAL SYSTEMS: OPAMP MODEL
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 The mathematical model == ideal OPAMP features an infinite (or realistic very large) open-
loop gain (G0), no offset/bias or any other technical deviation, infinite common-mode rejection 
ratio (CMRR), zero noise, and infinite output voltage range.

 It is a difference amplifier, i.e.:
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ANALOG COMPUTATIONAL SYSTEMS: OPAMP MODEL
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 Real transistor circuits show significant deviation from the ideal mathematical model!

 The (static) error E is introduced by a function , which depends on a large set of parameters:
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ANALOG COMPUTATIONAL SYSTEMS: OPAMP MODEL
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 Real transistor circuits show significant deviation from the ideal mathematical model!

 The (static) error E is introduced by a function , which depends on a large set of parameters.
 We need accuracte simulation to design analog circuits from given computational 

models!

≈
Matrix and Model Builder

Netlist

DC Analysis AC Analysis Freq. Analysis

Iterative linear/non-linear eq. solver

Device
Models

Monte
Carlo

V/I Results

Parameters
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ANALOG COMPUTATIONAL SYSTEMS: OPAMP MODEL
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 Real transistor circuits show significant deviation from the ideal mathematical model!
 A real OPAMP requires about 10-20 transistors, a lower transistor count increases the 

error:
 Output offset Vout0, although V=0
 Drift
 Limited Gain (Amplification) G
 Non-linearity
 Temperature dependency (including spatial gradients)
 Asymmetric input and output transfer functions
 Limited output range Vout (Saturation, Clipping)
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ANALOG COMPUTATIONAL SYSTEMS: ANALOG ANN
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 We implement an analog artificial neuron (AAN) with OPAMP architecture.
 The neuron is composed of three simple OPAMP blocks and a sigmoid block with a bipolar 

path architecture [different paths for negative and positive parameters]:

FB-

wn1

wn2

 x1

+

-

bn

 x2

FB-

wp1

wp2

 x1

+

-

bp

 x2

FB-

+

-

IB-

IB+

GB+ Sg y

GB+

GB+

Mathematical Model of a neuron, Xu, 2020

Negative 
Weights 
and Bias

Positive 
Weights 
and Bias
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ANALOG COMPUTATIONAL SYSTEMS: ANALOG ANN
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 We implement an analog artificial neuron (AAN) with a simple transistor circuit.
 The neuron is composed of three simple OPAMP blocks and a sigmoid block with a bipolar 

path architecture using 12 bipolar transistors and 27 resistors (excluding weights):
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TRAINING OF ANALOG ANN: DIGITAL MODEL APPROACH
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 Starting point: A standard mathemarical/numerical model of a neuron is used consisting of two 
functions: Linear sum-of-products (SOP) and non-linear activation function (A).

 Weights are considered as amplification factors for the OPAMP blocks.

 Semi-realistic limitations by model clipping: Limited output of SOP blocks (e.g., ±10), limited 
amplification (e.g. wmax=10); input and output scaling; modified sigmoid function

 Classical training algorithms based on analytical gradients can be used: sgd/adam/adagrad.

Bosse, S.; Lüssem, B. Analog Electronic Neural Networks: Analog Computing Combined with Digital Data Processing 
Revisited. Eng. Proc. 2024, 82, 102. https://doi.org/10.3390/ecsa-11-20463 

Syn-
thesis

Num.
Train-

ing
Test

Electronic
Simulation
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TRAINING OF ANALOG ANN: ANALOG MODEL APPROACH
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 Next step: Training with analog model function f(x,w): xy (digital twin) of the 
electronic circuit containing SOP and A functions! SOP and A can be non-linear!

 Bipolar architecture: Separated paths for negative and positive weight/bias parameters 
trained simultaneously.

 Realistic limitations by analog model through:
1. Real Measurements 

2. Electronic Simulation 

3. Surrogate Model (SM) derived from data (Real/Simu), e.g., FC-ANN (tanh activation functions)

 Training: gradient descent (gd) with numerically computed gradient of df(x,w)/dwi

w: weight parameter, e: backpropagated error, ɑ: update rate 

Normally SOP and A 
are computed 

separately! Here 
the entire f(SOP,A) 

is computed 
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TRAINING OF ANALOG ANN: ANALOG MODEL APPROACH
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 Next step: Pre-Conditioning of parameter space using Simulated Annealing before error gradient 
backpropagation is performed!

function SA(data, params, num_steps=1000, noise=0.01, cooling=0.999) {
  initial_params=optimal_params=best_params=params; temp=1.0
  new_loss = best_loss = loss(data,params)
  for(i=1,num_steps) {
    temp=temp*cooling
    new_params = params.map(p => p+gaussianRandom(0, noise))
    new_loss = loss(data,new_params)
    if (new_loss < best_loss || random()*temp > best_loss/new_loss) {
       params = new_params
       if (new_loss < best_loss) { optimal_params = params; best_loss = new_loss }
    }
  }
}
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TRAINING OF ANALOG ANN: ANALOG MODEL APPROACH
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Data
Scaling

Random
Model
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Init.

Simmulated
Annealing

Gradient
Descent

1. Workflow: Training
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Electronic
Simulation

Test
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TRAINING OF ANALOG ANN: SURROGATE MODEL APPROACH
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 The Analog Electronic Model (AM) is one monolithic parameterized function f(x,w): x  
y describing input to output relation used for forward and backward computations of 
the AANN. 

 The mapping x  y  can be derived by:
1. Measurement in real parametrizbale electronic circuits (hardware-in-the-loop): Slow! Too slow;
2. By electronic simulation: Not so slow but still too slow;
3. By a data-driven surrogate model SM/S-Model (e.g., a neural network, too): Faster, let‘s try it!
4. By an analytical function: Fastest, but impossible (or too simplified). 

Spice3
Netlist
Model

Spice3
Simu-
lation

ix1 ix2 T vys

-1 -1 27 1.5

-1 0 27 2.4

FC-
ANN

10 tanh

10 tanh

10 tanh

ix1,ix2,T

vys

x/y Data
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TRAINING OF ANALOG ANN: ANALOG MODEL APPROACH
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TRANSFER FUNCTION S-MODEL VS. CIRCUIT 

S-Model
• First overview: 

Monotonic behavior 
• Interpolation: Input 

values within training 
range

Circuit
• Output voltage 

versa input current 
(ix1=fixed)

• Monotonic 
behaviour

 S-Model analysis within interpolation range: Promising results ... we are done? 

S-Model
• Low prediction error 

compared with circuit 
data, but error oscillates 
in the steep region 
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TRANSFER FUNCTION S-MODEL VS. CIRCUIT 

S-Model
• Non-Monotinic behavior! 
• Extrapolation: Input 

values outside training 
range

Circuit
• Output voltage 

versa input current 
(ix1=fixed)

• Monotonic behavior

 What is wrong here? The reality gap of data-driven models ... never extrapolate

S-Model
• High prediction error 

compared with circuit 
data outside the training 
space in the right branch

• Left branch seems still 
valid, really?
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TRANSFER FUNCTION S-MODEL VS. CIRCUIT 

Circuit
• Output voltage versa input 

current (ix1=fixed)
• Left branch
• Falling monotonic 

behavior

• But gradient shows 
„notches“

 What is wrong here? The reality gap of data-driven models ... the details!

S-Model
• Non-

monotonic 
behavior

• Zero crossing 
of gradient

• Non-convex 
optimization 
problem



Sysint 2025 Conference - Stefan Bosse 29

EXPERIMENTS AND RESULTS

Logic EXOR Gate
• [2,1] neurons
• Convergence: < 50 Epochs, > 70% 

success rate

• Bipolar separated parameters: yes
• Non-linear problem

Logic OR Gate
• [2,1] neurons
• Convergence: < 20 Epochs, 100% 

success rate

• Bipolar separated parameters: yes
• Linear problem

 Bipolar clipped mathematical model (baseline model), Gradient Desc. (+ Simulated Annealing)

IRIS Benchmark 
• [3,3] neurons

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 1

w l pw pl Cls

3 3 2 1.5 Set

4 2 1 2.4 Ver

3 4 2 2 Sac

2 3 1 2 Ver

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0
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EXPERIMENTS AND RESULTS

Logic EXOR Gate
• [2,1] neurons
• Convergence: < 100 Epochs,

> 50% success rate

• Non-linear problem

Logic OR Gate
• [2,1] neurons
• Convergence: < 50 Epochs, 

> 90% success rate

• Linear problem

 Bipolar analog el. surrogate model (from simulated data), Gradient Desc.+ Simulated Annealing

IRIS Benchmark 
• [3,3] neurons

• 100 s forward, 800 s backward

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 1

w l pw pl Cls

3 3 2 1.5 Set

4 2 1 2.4 Ver

3 4 2 2 Sac

2 3 1 2 Ver

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0



CONCLUSIONS

Analog ANN

 Bipolar Difference OP Amplifier 
Architecture

 Transistor circuit: 12 Transistors

 SOP with non-linearity, Offset

 SOP with limited weights (<40)

 Training: Indirect with Bipolar 
clipped numerical model with post-
synthesis or direct analog 
electronic surrogate model

Surrogate Model ML Training and Results

 Training with Error Gradient 
Descent Backpropagation

 Parameter space initializiation with 
random process

 Parameter space pre-conditioning 
with Simmulated Annealing

 Low convergence, trainining 
instability, but low class. error

 Iterative monitored training process 
with fallback on low progress

31

 Derived from electronic simulation 
of OPAMP circuit

 Current Controlled Voltage 
Source Model. Input: Positive and 
negative SOP currents, Output: 
Voltage of Sigmoid approximation 
circuit

 Low approx. error, but deviation 
at the boundaries 

 High error beyond trained 
parameter space 
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