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Overview

Self-organising and intelligent systems applied to sensor data.
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Overview

Self-organising and intelligent systems applied to sensor data.

1. Introduction to complex and self-organising Systems
2. Material-integrates Intelligent Systems
3. Multi-agent Systems: From distributed computing to data-driven

methods
4. Internal Sensors: Distributed Machine Learning for damage

prediction and optimisation with Sensor Networks
5. External Sensors: Damage diagnostics with data from

laboratory equipment and measurements
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The story behind:

The integration level and density of sensors increased
significantly in the last decades. The number of deployed
sensors and the data volume increased exponentially.
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Integration of sensors, analogue and digital signal
processing, and networking created a paradigm shift: From
passive sensors to active intelligent communicating and
interacting sensor networks and clouds.
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The story behind:

The integration level and density of sensors increased
significantly in the last decades. The number of deployed
sensors and the data volume increased exponentially.

Integration of sensors, analogue and digital signal
processing, and networking created a paradigm shift: From
passive sensors to active intelligent communicating and
interacting sensor networks and clouds.

Sensors are now integrated in every thing and device. The
next step: Material-integrated sensing and actuation
systems measuring and changing the physical state
of structures and materials.
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The book behind:

S. Bosse, D. Lehmhus, W. Lang, M. Busse (Ed. & Auth.),
Material-Integrated Intelligent Systems: Technology and
Applications, Wiley, ISBN: 978-3-527-33606-7 (2018)
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Interdisciplinary Research

Materials Science
Computer Science
Electrical Engineering and Electronics
Fabrication and Integration
Micro-system Technologies

The book behind:

S. Bosse, D. Lehmhus, W. Lang, M. Busse (Ed. & Auth.),
Material-Integrated Intelligent Systems: Technology and
Applications, Wiley, ISBN: 978-3-527-33606-7 (2018)
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Introduction
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Distributed Systems

Sensor Networks: Phys.
undirected graph of sensor
nodes
Sensor node: Core cell
Communication: Messages (IP,
IoT, Internet)
Input: Local sensor data
Output: Global state (e.g., in
SHM)
Data reduction (dimension,
size)

Computational Systems

High-volume data processing
Virt. directed graphs of
functions (functional graphs)
Communication: Function
arguments, shared memory
Input: Global (sensor) data
Output: Any target variables
Data reduction (dimension,
size)
Organisation: Cellular
Automata, Agents

Complex Systems
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Complex Systems

Complex systems pose a behaviour that is intrinsically
unpredictable and uncontrollable, and that cannot be
described in any complete or closed functional/analytical
manner.
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Complex systems pose a behaviour that is intrinsically
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Complex systems can be composed of simple interacting
cells. The components of a complex system are commonly
called agents or cells of a Cellular Automata.
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Complex Systems

Complex systems pose a behaviour that is intrinsically
unpredictable and uncontrollable, and that cannot be
described in any complete or closed functional/analytical
manner.

Complex systems can be composed of simple interacting
cells. The components of a complex system are commonly
called agents or cells of a Cellular Automata.

These are individual systems that act upon their
environment in response to events they sense or experience.
They interact with each other or the environment.
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Complex Systems

Emergence: Simple interactions at the local level give rise to
complex patterns at the global level with self-☆ capabilities.
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[Barszcz et al.,2013]

Complex Systems

Emergence: Simple interactions at the local level give rise to
complex patterns at the global level with self-☆ capabilities.

Fig. 1. Emergence in a Cellular Automaton with Moore Neighbourhood after an iterative
run (Initialisation: Signal frequency spectrum) for detecting anomalies in sensor signals
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Self-Organising Systems

"It is a system where a collection of interacting elements
gives rise to patterns of behaviour that the individual
elements are not capable of when they don’t interact"

PD Stefan Bosse/Automated Damage Diagnostics and Learning Technical Systems/Introduction

16 / 73



[Farley and Clark, 1954]

Self-Organising Systems

"It is a system where a collection of interacting elements
gives rise to patterns of behaviour that the individual
elements are not capable of when they don’t interact"

A system which changes its basic structure as a function of its
experience and environment

Emergence and Emergent properties
Organization can be defined as structure with function: the components
(agents) of the system are arranged in an orderly way (structure) so as to
achieve a certain goal (function).

Absence of external control (autonomy)
Decentralised control
Dynamic operation (evolution over time)
Strongly related to the concept of agent-based systems
Resilience (Failure of some elements do not effect system behaviour)
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Self-organisation Concepts

Self-organisation as a problem of coordination and communication

Self-organization by Alignment
Concept of Division of Labor - coordinates activities that happen simultaneously
—in parallel.
Workflow is its complement: it coordinates activities that take place one after the
other—sequentially.
Aggregation
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[Francis Heylighen (Vrije Universiteit Brussel)]

Self-organisation Concepts

Self-organisation as a problem of coordination and communication

Self-organization by Alignment
Concept of Division of Labor - coordinates activities that happen simultaneously
—in parallel.
Workflow is its complement: it coordinates activities that take place one after the
other—sequentially.
Aggregation
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Strong and Weak Self-Organising Systems

Strong self-organising systems are those systems where there is
no explicit central control neither internal nor external.

Weak self-organising systems are those systems where, from an
internal point of view, there is re-organisation maybe under an
internal (central) or external control or planning.
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Strong and Weak Self-Organising Systems

Strong self-organising systems are those systems where there is
no explicit central control neither internal nor external.

Weak self-organising systems are those systems where, from an
internal point of view, there is re-organisation maybe under an
internal (central) or external control or planning.

Self-organisation in technical and digital systems is mostly
data-driven.
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Knowledge

How can we derive knowledge from data and how can we
understand data? What is the spatial and temporal context of
data?
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Knowledge

How can we derive knowledge from data and how can we
understand data? What is the spatial and temporal context of
data?

Deductive Knowledge
Semantic- and ontology-driven methods (semantic schemas).

Inductive Knowledge
Data-driven methods like Statistical Modelling and Machine Learning.

Information Mapping
Knowledge Graphs, e.g., can provide a relational mapping of data on
knowledge and reasoning.
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Knowledge

How can we derive knowledge from data and how can we
understand data? What is the spatial and temporal context of
data?

Deductive Knowledge
Semantic- and ontology-driven methods (semantic schemas).

Inductive Knowledge
Data-driven methods like Statistical Modelling and Machine Learning.

Information Mapping
Knowledge Graphs, e.g., can provide a relational mapping of data on
knowledge and reasoning.

Machines do not have a-priori access to deductive knowledge!
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Dynamic Communication
Structures (Networks)

Mobile and ad-hoc network
formations
Resilient network graphs
Load balancing

Distributed Sensor Fusion
Local sensor processing
Virtual sensors: Aggregates

Distributed Sensor Networks
Local interaction based on context
Damage Diagnostics
Structural Health Monitoring

Self-organisation in technical and digital systems
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Dynamic Communication
Structures (Networks)

Mobile and ad-hoc network
formations
Resilient network graphs
Load balancing

Distributed Sensor Fusion
Local sensor processing
Virtual sensors: Aggregates

Distributed Sensor Networks
Local interaction based on context
Damage Diagnostics
Structural Health Monitoring

Distributed Learning and
Adaptivity

Multi-model inference (Ensemble
Learning)
Local models using local data
Global model fusion
Incremental Update Learning
Reinforcement Learning
Concept Drift compensation

Distributed Solving of
Optimisation Problems

Adaptive Robotic Structures
Energy Management
Manufacturing Processes

Self-organisation in technical and digital systems
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Applications and Research

In the next sections an overview of different applications and use-
cases is given:

1. Agent-based Pattern Recognition
2. Distributed Damage Diagnostics in Sensor Networks
3. Incremental Distributed Learning for SHM
4. Multi-domain simulation combining learning agents

and multi-body physics
5. Data-driven Damage Diagnostics and Prediction
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Data-driven State Estimation

The aim of data-driven state estimation is to derive
approximated model functions m (s ):s → σ that map sensor
data on mechanical or structural states (or probabilities) incl.
damages.
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Damage (class, position, propagation)
Load (static, dynamic, cyclic)
Vibration
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Data-driven State Estimation

The aim of data-driven state estimation is to derive
approximated model functions m (s ):s → σ that map sensor
data on mechanical or structural states (or probabilities) incl.
damages.

Examples of target states (attributes/properties) of materials and structures:

Damage (class, position, propagation)
Load (static, dynamic, cyclic)
Vibration
Bending and strain
Fatigue, Breakage

But data-driven methods in engineering suffer from low
experimental data variance resulting in specialised rather than
generalised state estimation models.
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Material-integrated Sensor Networks

Sensor data is processed locally by autonomous low-resource
embedded systems (local state) and fusioned globally to
relevant information (global state).
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Material-integrated Sensor Networks

Sensor data is processed locally by autonomous low-resource
embedded systems (local state) and fusioned globally to
relevant information (global state).

The single networks nodes are simple and low-level, but their
connection create complex high-level capabilities by self-
organisation.

S. Bosse, D. Lehmhus, W. Lang, M. Busse (Ed.), Material-Integrated Intelligent
Systems: Technology and Applications, Wiley, ISBN: 978-3-527-33606-7 (2018)
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Concept of Material-integrated Intelligent Systems

Fig. 3. The fundamental elements of a material-integrated intelligent system
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Intelligent Objects

An intelligent object O is defined by its interaction with the environment and
its state σ: 
World ⇒ Sensing ⇒ O:σ→σ' ⇒ Actuation ⇒ World 
World := { Environment, Machines, Devices, Humans, Data }.

An intelligent object can be considered as an agent that is coupled loosely to its
environment and poses self-☆ capabilities:

Self-adaptivity
Self-organisation
Self-connectivity
Self-learning
Self-mobility
Self-management
Self-improvement
Self-diagnosis and awareness
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Intelligent Objects

Self-☆ capabilities are considered as enablers for future
computing systems that will have to deal with unprecedented
complexity, heterogeneity, and dynamics.

Self-☆ refers to the capability of a system to modify its own
behaviour or structure without any external control in reaction to
or even in anticipation of system dynamics.

Intelligent objects are not limited to a sensing system - they are
data analytic and mechatronic systems.
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[Qing, Li, Wang, Sun, 2019; Chen et al. 2020]

Structural Health Monitoring: Information Mining

Different integration levels: Sensors, full sensor nodes, full sensor
networks

Fig. 4. (a) Ultrasonic sensors integrated in a wing (b) Expandable multifunctional SN
(c) Multi-modal stretchable SN
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About 100 MIPS/mm 2

About 100 kbit/mm 2

About 100 µW/mm 2

About 100 kbit/s

Computers and Data Processing

Even a square millimetre computer provides today enough
capabilities to perform Machine Learning!

PD Stefan Bosse/Automated Damage Diagnostics and Learning Technical Systems/Material-integrated Sensor Networks

Example: Arm Cortex M0(+): 1MIPS/MHz, 10-100µW/MHz, 8kB
RAM, 32kB ROM, 0.01-0.1mm 2 (depends on silicon process)
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[Warneke et al, 2002; Hitachi]

(Left) Arm Cortex M0, 740kHz, 4kB RAM, S:Temperature+Light,

C:900MHz+optical, P=70mW, V≈10mm 3

(Right) read-only tracking, 128 Bit UID, S:∅, C:RFID/2.4GHz,

V=0.0002mm 3!

Smart Dust: Large-scale Networks
Autonomous sensing and communication in a cubic millimeter

Fig. 5. (Left) Conceptual diagram of a smart dust mote, one example of a tiny,
autonomous, wireless sensor node / 2002 (Right) Hitachi "Smart Dust" / 2008
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Multi-agent Systems and Cellular Automata
ABM. Agent-based Modelling

ABS. Agent-based Simulation

ABC. Agent-based Computation ① Mobile and
autonomous computational processes ② Numerical
Processes (Functions)

ABL. Agent-supported and Agent-based Learning

ABX. ABC+ABS/ABM

ABCA. Hybrid Agents + Cellular Automata
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Agent-based Pattern Recognition
Self-organised Autonomy and Distributed Search // ABCA

Feature Marking in Images ⇒ Searching Regions-of-Interest
(ROI) ⇒ Finding Anomalies

Fig. 6. Region growing and border feature detection for a brain-scan image [Liu,2001]
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ROI Marking and Segmentation in Time Signals with Agents

Goal. Find ROI containing relevant damage feature information
without knowing anything about damage (i.e., anomaly
indeed).

System. Pure computational system applied to GUW time
signals using functional agents ⇒ Linear Cellular Automata.

Methods & Algorithms. Time signal is segmented and
discretised. ROI (start and end time point) is marked by agents
searching local features (population density). Reproduction,
diffusion, and termination of agents creating marking
distributions.
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ROI Marking and Segmentation in Time Signals with Agents

The Multi-agent System consists of simple agents (just
computational functions) with different behaviour:

Master agent
Segmentation agent partitioning signal in small segments
Explorer agents finding features by amplification

Agent strategies: Self-organisation by reproduction and
diffusion based on neighbourhood signal comparison (feature
amplification and damping) delivering a feature estimation φ
∈ [0,1] ⇛ Constrained by parameter set P
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ROI Marking and Segmentation in Time Signals with Agents

Algorithm

The signal segmentation algorithm bases on a divide-and-conquer approach:
The time-resolved signal vector x (t ) is reduced to a segment set {s (n )}
by using a data filter algorithm (peak, arithmetic average, or exponential
filter).
A segment agent can create explorer agents (at place i ) to investigate
the segment neighbourhood within a given radius (places i±δ ∈ r ).
Neighbouring agents communicate with each other by using signals ⇒
Linear Cellular Automata
The explorer agent e (i ) has the goal to collect data from the current left
and right side neighbourhood within a given radius. The neighbourhood
data values are compared with the current associated data value ⇒ φ
If φ ∈ [a,b] ⇒ Reproduction+Marking else Diffusion (i → i ')
If lifetime (number of iterations) is reached ⇒ Terminate.
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→
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ROI Marking and Segmentation in Time Signals with Agents

Fig. 7. The MAS: Perception; Event-based instantiation of explorer agents; Diffusion
and Reproduction based on neighbourhood signal comparison; Communication via
signals

S. Bosse, M. Koerdt, A. v. Hehl, Robust and Adaptive Non Destructive Testing
of Hybrids with Guided Waves and Learning Agents, 3. Internationale
Konferenz Hybrid Materials and Structures 2018
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ROI Marking and Segmentation in Time Signals with Agents

Signal records from acoustic measurements can differ significantly
with respect to amplitudes, frequency spectrum, and noise

MAS parameter set P cannot be chosen a-priori; selection based
on evolutionary or data-driven prediction algorithms (ANN)

Hybrid approach combining ANN with MAS
ANN: (s 0,s 1,f 1,..) → P
MAS: (x (t ),P ) → ROI [i a,i b]

Automated data-driven parameter estimation and parameter
space exploration is required!

PD Stefan Bosse/Automated Damage Diagnostics and Learning Technical Systems/Multi-agent Systems and Cellular Automata

→

45 / 73



ROI Marking and Segmentation in Time Signals with Agents

Fig. 8. Sensor data pre-processing using a multi-level architecture and Machine
Learning providing an automatic and adaptive MAS parameter selection.
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Distributed Machine Learning and Agents
DML

Multi-model ML with local inference and global fusion (global
state estimation from local states)

STMP
Single-instance Training with Multi-instance Prediction
(Training of one model with global data → Model replication
→ Prediction with local data)

MTMP
Multi-instance Training with Multi-instance Prediction
(Training of multiple local models → Prediction with local
data only, )
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Distributed Damage Diagnostics in Sensor Networks
Goal. Robust detection of hidden damages in hybrid materials
using guided ultrasonic waves (GUW) and a distributed sensor
network.

System. Hybrid material plate with embedded or applied GUW
sensors and actuators (transducers). Two set-ups: A) 12 discrete
transducers B) one transducer and 2D air US scanning providing
250 × 250 virtual sensors ⇒ time-dependent sensor signals.

Algorithms and Methods. Multi-model instance ensemble
learning and model fusion. Global fusion: Negotiation, voting,
point density clustering, centre of mass. Feature extraction:
Discrete Wavelet Transformation (DWT), Predictor: sequential
state-based LSTM ANN or parallel CNN.

PD Stefan Bosse/Automated Damage Diagnostics and Learning Technical Systems/Distributed Machine Learning and Agents

S. Bosse, D. Weiss, D. Schmidt, Supervised Distributed Multi-Instance and
Unsupervised Single-Instance Autoencoder Machine Learning for Damage
Diagnostics ..., Computers 2021
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Concept

Method: Holonic principle with decomposition of large
complex problems in multiple simple problems
(Divide&Conquer principle) and distributed local data
processing.

PD Stefan Bosse/Automated Damage Diagnostics and Learning Technical Systems/Distributed Machine Learning and Agents

49 / 73





Fig. 9. From off-line and
centralised single-model ML to
distributed multi-model ML with
global model fusion

Concept

Method: Holonic principle with decomposition of large
complex problems in multiple simple problems
(Divide&Conquer principle) and distributed local data
processing.
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Architecture & Results
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Fig. 10. Each sensor node performs damage prediction based on local sensor data
(GUW) → Global fusion by density clustering and probabilistic filtering

51 / 73



Distributed Learning Agents and Simulation

Goal. Damage prediction and localisation with learning
interacting agents with noisy and unreliable strain gauge sensor
data (time series)

System. Multi-agent System with simple learning agents posing
low complexity, network of virtual sensors from simulation.

Algorithms & Methods. Multi-domain simulation combining
Multi-agent processing and Multi-body Physics (MBP) delivering
virtual sensor data (JavaScript Agent Machine platform).
Damage location computed by global fusion from local
predictions.
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Multi-body Physics Model

PD Stefan Bosse/Automated Damage Diagnostics and Learning Technical Systems/Distributed Machine Learning and Agents

Fig. 11. (a) Mass-spring model of structure (b) Sensor Node Network (c) Strain Sensors
(d) Virtual defects and disturbing loads
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Concept

Fig. 12. The sensor processing and damage prediction concept: Local sensor
processing, learning, inference ⇒ Global fusion and prediction of position and time of
damage event
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Training Data Variance

One major issue in training of machine learned models is
specialisation of the model!

Broad variance of training data samples are required for
generalised models!

Experimental collection of large sensor data bases with high
variance is difficult to achieve!

Simulation can overcome this limitation:

Using Monte Carlo methods applied to sensor signals and
experimental parameters create a broad variance of data
samples!
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Algorithmic Scaling

How to fit in embedded systems? Main principles:

1. Decomposition and Distribution: Localised sensor data
processing → distributed information inference →
hierarchical architectures.

2. Down Scaling: Data complexity, data accuracy, algorithmic
complexity, algorithmic substitution, approximation.

3. Model-driven approaches: Feature selection, model fusion,
model-reduction, model-substitution.

4. Accelerators: HW(SW) co-processors, HL synthesis of
algorithms/SW → HW (RTL)
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Algorithmic Scaling

Fig. 13. (Left) Data-driven complex time-series prediction on GUW signal with DWT
features using LSTM networks [Bosse, Schmidt, Weiss: Sensors 2019] and CNN (Right)
Model-based feature extraction and simple numerical damage prediction [Polle,
Bosse: SysInt 2022]
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Damage Diagnostics with Laboratory Equipment
Non-destructive Testing

X-ray or US computer tomography for damage and material
characterisation

Destructive Testing
Tensile tests for material characterisation; Micrographs for
damage and material characterisation
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Data Series Prediction in Tensile Tests

Goal. ① Predict material breakage by early data recorded in the
linear and pre-non-linear material data ② Predict material curves
by data series prediction

System. Tensile test equipment, data series recording.

Methods. Feedforward ANN, Recurrent and state-based ANN.

S. Bosse, E. Kalwait, Damage and Material-state Diagnostics with Predictor
Functions using Data Series Prediction and Artificial Neural Networks, ECSA
2020 MDPI, 15.11 -30.11.2020, Basel, Switzerland
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Methods

Three different methods were used to predict the material
behaviour of a device under test (DUT) from tensile test data
⟨F,x⟩ (F:load force, x: strain length):

1. Feed-forward Artificial Neural Networks (FFNN) predicting the
damage fracture point (breakage x dam ∈ x, strain length) of DUT
from the first data points F 0 of a tensile test, i.e., with data series
F of the load forces

Γ( →F0,P) : →F0 → xdam,

→F0 ⊂ →F = [F(x)|x = 0, ϵ, 2ϵ, . . ,nϵ]
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2. State-based Recurrent ANN (RNN) performing the same prediction
of the damage strain length point by early tensile data.

3. State-based RNN performing data series prediction, i.e., the force-
strain curves from tensile tests to predict the start of the inelastic
range of the material:

Γ(F(δ, →Fi0),P) : Fi → Fi+δ,

→Fi0 = [Fj|j < i]

Γ is a parametrized (P) predictor function hypothesis derived
from ML and training.
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Experiments
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Fig. 14. Damage fracture point prediction
(maximal strain length x dam until

damage) from measured data of the first
segments of the strain-force diagram from
tensile tests

Damage point Prediction
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Fig. 15. A typical measured strain-force
curve from a tensile test (blue line) and
forward predictions (red line segments)
x i+δ

Material State Prediction
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ROI and Anomaly Detection in CT Data

Goal. Detect regions of interest in CT data volumes
automatically. A ROI bases on anomaly detection and is a
candidate for a damages: Breakage, impurity, delamination,
cracks.

System. Micro X-ray CT devices providing different resolutions
and X-ray energies, prepared composite plates (e.g., GLARE).

Methods and Algorithms. Edge detection using kernel filters
and gradient algorithms, Z-profiling slicing the CT volume along
z-axis (depth), anomaly marking by LSTM, CNN, and SOM,
threshold discrimination.

PD Stefan Bosse/Automated Damage Diagnostics and Learning Technical Systems/Damage Diagnostics with Laboratory Equipment

Chirag Shah, Stefan Bosse, and Axel von Hehl. Taxonomy of Damage Patterns
in Composite Materials, Measuring Signals, and Methods for Automated
Damage Diagnostics, Materials 15 (MDPI), no. 13 (2022): 4645
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Supervised CNN

Fig. 16. Z-profile signals as 1D images as input for a CNN damage classifier (ND: No
damage class, D1: Damage 1, D2: Damage 2, and so on)
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Supervised CNN

Fig. 17. (Left) Damage feature maps retrieved from four different CNN classifiers and
for the specimen A (training and prediction), B, C, and D) (Right) CT image volume
and selected x‐y slice visualization (A‐B) With centred resin defect in the PREG layer
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Unsupervised SOM

Fig. 18. Principle concept of Self-organising Maps (SOM). The neural node set {n}
(squares, left side) represents a feature map {f} (circles, right side)
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Fig. 19. SOM feature maps of the z-signal volumes for different specimen and with
different SOM network sizes (rows × columns); Specimen A: Sharp resin washout, B:
fuzzy resin washout; C: base-line; D: large area delamination
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Conclusion
Data-driven state estimation (e.g., damages) from
experimental data is a challenge.

PD Stefan Bosse/Automated Damage Diagnostics and Learning Technical Systems/Conclusion

70 / 73







Conclusion
Data-driven state estimation (e.g., damages) from
experimental data is a challenge.

The measured sensor data space is sparse and lack of
generalisation. Simulation can be beneficial.

PD Stefan Bosse/Automated Damage Diagnostics and Learning Technical Systems/Conclusion

71 / 73









Conclusion
Data-driven state estimation (e.g., damages) from
experimental data is a challenge.

The measured sensor data space is sparse and lack of
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The measured sensor data space is sparse and lack of
generalisation. Simulation can be beneficial.

In addition to classical functional algorithms, agents, cellular
automata, and maps posing self-organisation and self-
adaptivity can be used to identify regions of interest in sensor
data and to find anomaly regions.

Distributed algorithms used in sensor networks process sensor
data locally (including ML-based local state estimation) and
derives a global state by fusion ⇒ Robustness (noise)!
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