PD Dr. rer. nat. Stefan Bosse

Universität Bremen - FB Mathematik und Informatik

Physiker & Informatiker

1 / 47

PD Stefan Bosse - AFEML - Module 0: About the Lecturer -

About the Lecturer

2 / 47

PD Stefan Bosse - AFEML - Module 0: About the Lecturer - Bremen

Bremen

Privatdozent im Fachbereich Mathematik und Informatik, Universität Bremen

3 / 47

PD Stefan Bosse - AFEML - Module 0: About the Lecturer - Bremen

Bremen

Privatdozent im Fachbereich Mathematik und Informatik, Universität Bremen

2016: Habilitation mit der Venia Legendi für die Informatik

4 / 47

PD Stefan Bosse - AFEML - Module 0: About the Lecturer - Bremen

Bremen

Privatdozent im Fachbereich Mathematik und Informatik, Universität Bremen

2016: Habilitation mit der Venia Legendi für die Informatik

2018-2019: Vertretungsprofessur Praktische Informatik und Lehrbeauftragter in der Fakultät Informatik, Universität Koblenz-Landau

5 / 47

PD Stefan Bosse - AFEML - Module 0: About the Lecturer - Bremen

Bremen

Privatdozent im Fachbereich Mathematik und Informatik, Universität Bremen

2016: Habilitation mit der Venia Legendi für die Informatik

2018-2019: Vertretungsprofessur Praktische Informatik und Lehrbeauftragter in der Fakultät Informatik, Universität Koblenz-Landau

2020-heute: Wissenschaftlicher Leiter und Projektleiter in der transregionalen DFG Forschungsgruppe 3022, Datengetriebene Schadensdiagnostik mit ML

6 / 47

PD Stefan Bosse - AFEML - Module 0: About the Lecturer - Bremen

Bremen

Privatdozent im Fachbereich Mathematik und Informatik, Universität Bremen

2016: Habilitation mit der Venia Legendi für die Informatik

2018-2019: Vertretungsprofessur Praktische Informatik und Lehrbeauftragter in der Fakultät Informatik, Universität Koblenz-Landau

2020-heute: Wissenschaftlicher Leiter und Projektleiter in der transregionalen DFG Forschungsgruppe 3022, Datengetriebene Schadensdiagnostik mit ML

2022-heute: Wissenschaftlicher Leiter und Projektleiter in der U Bremen Research Alliance AI Center for Health Care (Add. Fertigung und Prozessoptimierung)

7 / 47

PD Stefan Bosse - AFEML - Module 0: About the Lecturer - Siegen

Siegen

Lehrbeauftragter im Fachbereich Msschinenbau, Lehrstuhl für Materialkunde und Werkstofftechnik, Universität Siegen

8 / 47

PD Stefan Bosse - AFEML - Module 0: About the Lecturer - Teaching and research topics

Teaching and research topics

9 / 47

PD Stefan Bosse - AFEML - Module 0: About the Lecturer - My Research Topics

My Research Topics

Sensor Data Sciences

  • Material-integrated sensor systems (the machine or the material as a sensor)
  • Sensor networks
  • Image processing and sensor fusion
  • Mobile data collection and mobile crowdsensing (the human being as a sensor)
  • Process optimization
10 / 47

PD Stefan Bosse - AFEML - Module 0: About the Lecturer - Research topics

Research topics

Distributed and Applied AI

  • Agents and multi-agent systems (computation with agents, ABX)
  • Machine Learning and Data Mining
  • Ensemble and Distributed Machine Learning
  • Structural Health Monitoring
  • Chat Bots
11 / 47

PD Stefan Bosse - AFEML - Module 0: About the Lecturer - Research topics

Research topics

Simulation

  • Agent-based Simulation (ABM/ABS)
  • Coupling of real and virtual worlds (Augmented Virtuality, ABS+ABX)
  • Parallel and distributed simulation methods and architectures (ABS/ABX)
12 / 47

PD Stefan Bosse - AFEML - Module 0: About the Lecturer - Research topics

Automated Feature Extraction with Machine Learning and Image Processing

Automatische Schadensdiagnostik in der Werkstofftechnik

Lecture and Winter School

PD Stefan Bosse

University of Siegen - Dept. Maschinenbau
University of Bremen - Dept. Mathematics and Computer Science

13 / 47

PD Stefan Bosse - AFEML - Module 0: Introduction - Research topics

Introduction

14 / 47

PD Stefan Bosse - AFEML - Module 0: Introduction - Target Audience

Target Audience

  • Materials Science and Engineering
  • Mechanical Engineering
  • Vehicle construction
  • Industrial engineering
  • International Production Engineering and Management

Student curriculum module area: Bachelor and Master Specialization

In addition to lecture students, scientific workers and thesis students are invited to participate to the winter school.

15 / 47

PD Stefan Bosse - AFEML - Module 0: Introduction - Main topics in this course

Main topics in this course

Metrics, taxonomies, methods, algorithms of ...

  • Sensors in materials testing technology, digital sensor data, multidimensional and time-dependent sensor data
  • Sensor data acquisition and processing (testing and measuring methods in materials testing technology and materials science)
  • Features and feature analysis in image data
  • Machine learning and automatic feature diagnostics (robustness, explainability, noise)
  • Algorithms and models (especially for image data)
  • Applications, demonstrations, examples, Digital laboratory exercises (integrated) with real and artificial measurement data from materials testing technology (X-ray CT, tensile tests, micrographs from the Add. Manufacturing, US time signals 2D/3D, and many more from YOU!)
16 / 47

PD Stefan Bosse - AFEML - Module 0: Introduction - Main topics in this course

17 / 47

PD Stefan Bosse - AFEML - Module 0: Introduction - Special topics in this course

Special topics in this course

X-ray Radiography and X-ray Tomography

  • From physical measurements to material structure analysis

  • Image processing (i.e., for 2D and 3D data volumes) is discussed with practical lessons using real-world data

  • Tomography fundamentals are introduced with practical applications and lessons using real-world data (including data from Siegen's Zeiss Xradia MicroCT device)

  • Microscopy Imaging

18 / 47

PD Stefan Bosse - AFEML - Module 0: Introduction - Fields of Application

Fields of Application

  • Destructive and Non-destructive Testing in general
  • Structural Health Monitoring (not addressed in this course)
  • Structural Testing
  • Material Design and Testing
  • Processes and production (control and optimization)

Your application?

19 / 47

PD Stefan Bosse - AFEML - Module 0: Introduction - Organisation

Organisation

  1. Introduction to basic methods and algorithms with simple "sandbox" tutorials and exercises (partially home/office work)

  2. Discussion of scientific application cases and available data

  3. Application of methods and algorithms to different complex application cases

  4. Discussions and presentation of results

20 / 47

PD Stefan Bosse - AFEML - Module 0: Introduction - Data

Data

What kind of data we have to process?

  1. Input Data D ⇒ Measurements
  2. Meta Data M ⇒ Context
  3. Intermediate Data R ⇒ Preprocessed
  4. Output Data F ⇒ Features

F(D,M):^D×M{RFG(R):^R^F

21 / 47

PD Stefan Bosse - AFEML - Module 0: Introduction - Data

Data

Input Data

  1. Dimension
    • 1D: Time-dependent vibration or guided ultrasonic wave signals measured at a specific geometrical position
    • 2D: Images (single projection, visible light, infrared, X-ray)
    • 3D: Time-dependent 2D images (videos) or 3D spatial data (multi-projection tomography, LIDAR, Coupled Ultrasonic, (Ultra)Sonography, Air-guided Ultrasonic)
    • 4D: Time-dependent 3D spatial data (tomography videos)
22 / 47

PD Stefan Bosse - AFEML - Module 0: Introduction - Data

Data

  1. Variable Class
    • Metric/Numerical, continuous (e.g., temperature)
    • Metric/Numerical, discrete (e.g., number of items)
    • Categorical/Symbolic (e.g., damage class)
    • Categorical/Interval (e.g., range intervals)
  2. Size
    • One data value
    • 1000 data values
    • 1M data values
    • ..
  3. Temporal Characteristics
    • Periodic
    • Sporadic
    • One-shot
23 / 47

PD Stefan Bosse - AFEML - Module 0: Introduction - Data

Data

Your data?

24 / 47

PD Stefan Bosse - AFEML - Module 0: Introduction - Data

Data

Meta Data

  • Any experiment is situated in a context:
    • Date, Place
    • Set-up
    • Operator
    • Environmental conditions (temperature)
    • Measuring technology, device, parameters
  • The device under test (DUT)
    • Dimensions
    • Material
    • ..
  • Data formats and structure!
25 / 47

PD Stefan Bosse - AFEML - Module 0: Introduction - Data Sources and Storage

Data Sources and Storage

Storage

  1. Files and File system
    • Linear Data Model
    • Tree Structure
  2. Web Storage (HTTP)
    • Tree Structure
  3. File Cloud Services (Seafile)
    • Tree Structure
  4. Databases (SQL, NoSQL, ..)
    • Table Structure
  5. Coded Data Structure in Files
    • File system in Files

Format and Coding

  1. JavaScript Object Notation (JSON)
  2. Comma Separated Values (CSV)
  3. Yet Another Meta Language (YAML)
  4. Numerical Python (numpy)
  5. Hierarchical Data Format (HDF5)
  6. Portable Network Graphics (PNG)
  7. JPEG, BMP, TIFF, ..
26 / 47

PD Stefan Bosse - AFEML - Module 0: Introduction - Data Examples

Data Examples

Anomaly detection in 3D X-ray CT image volumes (composite materials with defects) Materials 2022, 15(13), 4645; https://doi.org/10.3390/ma15134645

27 / 47

PD Stefan Bosse - AFEML - Module 0: Introduction - Data Examples

Data Examples

Breakage prediction with tensile test data (metal probes) SciForum ECSA 2020, https://doi.org/10.3390/ecsa-7-08279

28 / 47

PD Stefan Bosse - AFEML - Module 0: Introduction - Data Examples

Data Examples

Damage detection with Guided Ultrasonic Waves (composite material with pseudo defects) SysInt 2022, DOI: 10.1007/978-3-031-16281-7_35

29 / 47

PD Stefan Bosse - AFEML - Module 0: Introduction - Data Examples

Data Examples

Porosity analysis with metallurgical microphotographs of sliced surfaces (additive manufacturing) Materials 2022, 15(20), 7090; https://doi.org/10.3390/ma15207090

30 / 47

PD Stefan Bosse - AFEML - Module 0: Introduction - Data Examples

Data Examples

Feature marking of micro cracks and crack propagation of metal probes after applying stress AG Brandt, U Siegen

31 / 47

PD Stefan Bosse - AFEML - Module 0: Introduction - Features

Features

A feature is any kind of aggregated or condensed information from data.

  • Categorical features, e.g., damage classes, machine states, etc.
  • Metric/numerical features, e.g., length of a crack, spatial position, time, temperature
  • Regions of interest (labelled polygons)
  • Anomaly

The output of a ML model is typically a categorical or metric feature variable.

32 / 47

PD Stefan Bosse - AFEML - Module 0: Introduction - Features

Features

There are input and output features.

Input signal features
Selected features from the raw signal data that pose a strong correlation with the output target features Transformation of signal data to Intermediate variables

Examples: Statistical features of time data series (average, deviation, skewness, ..), frequency spectrum, ROI, wavelet transformation coefficients.

Output target features
The final relevant information that is obtained from the data, i.e., the answer to a question.
33 / 47

PD Stefan Bosse - AFEML - Module 0: Introduction - Features

Features

Your features?

34 / 47

PD Stefan Bosse - AFEML - Module 0: Introduction - Methods and Algorithms

Methods and Algorithms

A typical "Data Mining" work flow consists of different stages:

  1. Data pre-processing (e.g., filtering)
  2. Signal feature selection (what are the best/strongest intermediate variables) and their computation
  3. Selecting a predictor and analysis model (e.g., an artificial neural network or a decision tree)
  4. Fit the model to training data
  5. Apply the model to test data
  6. validation and improvement.

Different data processing methods and algorithms are used in the different stages.

35 / 47

PD Stefan Bosse - AFEML - Module 0: Introduction - Methods and Algorithms

Methods and Algorithms

Statistical Methods
Statistical analysis of signal data and computation of statistical aggregate variables. Mostly applied to data vectors (data series) or matrix data (images) Horizontal Analysis
Algebraic and geometrical Methods
Analysis of data variables with respect to correlation strength and information content, e.g., Principle Component Analysis, with optional following data transformation Vertical Analysis
Transformation Methods
Transformation of data spaces, e.g., time-to-frequency (fourier) or time-to-time/frequency (wavelet) spaces. Image processing applies often kernel-based transformations, e.g., contrast amplification, edge detection.
36 / 47

PD Stefan Bosse - AFEML - Module 0: Introduction - Methods and Algorithms

Methods and Algorithms

Regression Methods
A numerical parametrized model (e.g., polynomial function) is fitted to labelled training data Supervised Training
Selection Methods
A tree structure is created from labelled training data Supervised Training
Clustering Methods
A tree or functional graph structure is created from unlabelled training data Unsupervised Training and grouping of experiments.
37 / 47

PD Stefan Bosse - AFEML - Module 0: Introduction - Methods and Algorithms

Methods and Algorithms

In general, data processing and machine learning is a functional composition.

  • ML searches mapping functions F(X): X Y.

  • ML is commonly an approximation of a hypothesis model HF of an unknown real (world) model M

  • There are infinite approximations (hypothesis models), the so called model space

38 / 47

PD Stefan Bosse - AFEML - Module 0: Introduction - Methods and Algorithms

Methods and Algorithms

  • A model function that maps X on Y is commonly parametrized by P (parameter space):

F(X,P):X×PYargminP(Err)Err=|HM|,H=F

  • The structure of the model function itself can be parametrized by S, e.g., the degree of a polynomial function:

F(X,P)S:X×PYP={p0,p1,..,pS}Fi=p0+ipixi

39 / 47

PD Stefan Bosse - AFEML - Module 0: Introduction - Methods and Algorithms

Methods and Algorithms

Toolbox

  • Signal filtering and transformation (FFT, DWT, Hilbert and analytical signal,..)
  • Image Processing (Edge detection, clustering, filtering, binarization ,..)
  • Statistical analysis (basics, PCA, ..)
  • Machine Learning, supervised, unsupervised (Decision trees, regression, art. neural networks, LSTM, Self-organizing Maps, ..)
  • Agent-based approaches (pattern search, cellular automata)
40 / 47

PD Stefan Bosse - AFEML - Module 0: Introduction - Methods and Algorithms

Methods and Algorithms

Your methods?

41 / 47

PD Stefan Bosse - AFEML - Module 0: Introduction - Software

Software

The Web Browser is the Laboratory!

  1. WorkBook (fully self-contained HTML file) for the Web browser or node-webkit)

  2. WorkShell (node.js worker, terminal console, optional)

  3. SQLite3 Database (node.js)

  4. wex (local access to file system)

  5. Additional plug-ins (for WorkBook and WorkShell)

  6. Notebook (fully self-contained digital lessons for the Web browser)

42 / 47

PD Stefan Bosse - AFEML - Module 0: Introduction - Software

Software

Your software?

43 / 47

PD Stefan Bosse - AFEML - Module 0: Introduction - Software Architecture

Software Architecture

Work flow architecture

44 / 47

PD Stefan Bosse - AFEML - Module 0: Introduction - Toolbox

Toolbox

... andy many more ...

  • But most of all: The numerical R programming language, widely used in science and industry (not only for statistical analysis of table data)
45 / 47

PD Stefan Bosse - AFEML - Module 0: Introduction - R+

R+

R+ is an R dialect with a run-time environment entirely programmed in JavaScript and hence usable in any Web browser.

  • Introduction to R programming

    • Basic data structures
    • Basic computational statements
    • Advanced computational statements
    • Control statements
    • Input and Output operations
    • Image processing
  • R+ extends the core R syntax (e.g., simplified list, vector, and matrix constructors)

46 / 47

PD Stefan Bosse - AFEML - Module 0: Introduction - R+

R+

KISS: Keep it simple and safe and focus on algorithms and methods, not programming!

use math,plot
m = matrix(runif(100),10,10)
plot(m,auto.scale=TRUE)

47 / 47