Universität Bremen - FB Mathematik und Informatik
Physiker & Informatiker
PD Stefan Bosse - AFEML - Module 0: About the Lecturer -
PD Stefan Bosse - AFEML - Module 0: About the Lecturer - Bremen
Privatdozent im Fachbereich Mathematik und Informatik, Universität Bremen
PD Stefan Bosse - AFEML - Module 0: About the Lecturer - Bremen
Privatdozent im Fachbereich Mathematik und Informatik, Universität Bremen
2016: Habilitation mit der Venia Legendi für die Informatik
PD Stefan Bosse - AFEML - Module 0: About the Lecturer - Bremen
Privatdozent im Fachbereich Mathematik und Informatik, Universität Bremen
2016: Habilitation mit der Venia Legendi für die Informatik
2018-2019: Vertretungsprofessur Praktische Informatik und Lehrbeauftragter in der Fakultät Informatik, Universität Koblenz-Landau
PD Stefan Bosse - AFEML - Module 0: About the Lecturer - Bremen
Privatdozent im Fachbereich Mathematik und Informatik, Universität Bremen
2016: Habilitation mit der Venia Legendi für die Informatik
2018-2019: Vertretungsprofessur Praktische Informatik und Lehrbeauftragter in der Fakultät Informatik, Universität Koblenz-Landau
2020-heute: Wissenschaftlicher Leiter und Projektleiter in der transregionalen DFG Forschungsgruppe 3022, Datengetriebene Schadensdiagnostik mit ML
PD Stefan Bosse - AFEML - Module 0: About the Lecturer - Bremen
Privatdozent im Fachbereich Mathematik und Informatik, Universität Bremen
2016: Habilitation mit der Venia Legendi für die Informatik
2018-2019: Vertretungsprofessur Praktische Informatik und Lehrbeauftragter in der Fakultät Informatik, Universität Koblenz-Landau
2020-heute: Wissenschaftlicher Leiter und Projektleiter in der transregionalen DFG Forschungsgruppe 3022, Datengetriebene Schadensdiagnostik mit ML
2022-heute: Wissenschaftlicher Leiter und Projektleiter in der U Bremen Research Alliance AI Center for Health Care (Add. Fertigung und Prozessoptimierung)
PD Stefan Bosse - AFEML - Module 0: About the Lecturer - Siegen
Lehrbeauftragter im Fachbereich Msschinenbau, Lehrstuhl für Materialkunde und Werkstofftechnik, Universität Siegen
PD Stefan Bosse - AFEML - Module 0: About the Lecturer - Teaching and research topics
PD Stefan Bosse - AFEML - Module 0: About the Lecturer - My Research Topics
Sensor Data Sciences
PD Stefan Bosse - AFEML - Module 0: About the Lecturer - Research topics
Distributed and Applied AI
PD Stefan Bosse - AFEML - Module 0: About the Lecturer - Research topics
Simulation
PD Stefan Bosse - AFEML - Module 0: About the Lecturer - Research topics
Lecture and Winter School
PD Stefan Bosse
University of Siegen - Dept. Maschinenbau
University of Bremen - Dept. Mathematics and Computer Science
PD Stefan Bosse - AFEML - Module 0: Introduction - Research topics
PD Stefan Bosse - AFEML - Module 0: Introduction - Target Audience
Student curriculum module area: Bachelor and Master Specialization
In addition to lecture students, scientific workers and thesis students are invited to participate to the winter school.
PD Stefan Bosse - AFEML - Module 0: Introduction - Main topics in this course
Metrics, taxonomies, methods, algorithms of ...
PD Stefan Bosse - AFEML - Module 0: Introduction - Main topics in this course
PD Stefan Bosse - AFEML - Module 0: Introduction - Special topics in this course
X-ray Radiography and X-ray Tomography
From physical measurements to material structure analysis
Image processing (i.e., for 2D and 3D data volumes) is discussed with practical lessons using real-world data
Tomography fundamentals are introduced with practical applications and lessons using real-world data (including data from Siegen's Zeiss Xradia MicroCT device)
Microscopy Imaging
PD Stefan Bosse - AFEML - Module 0: Introduction - Fields of Application
Your application?
PD Stefan Bosse - AFEML - Module 0: Introduction - Organisation
Introduction to basic methods and algorithms with simple "sandbox" tutorials and exercises (partially home/office work)
Discussion of scientific application cases and available data
Application of methods and algorithms to different complex application cases
Discussions and presentation of results
PD Stefan Bosse - AFEML - Module 0: Introduction - Data
What kind of data we have to process?
F(D,M):^D×→M→{RFG(R):^R→^F
PD Stefan Bosse - AFEML - Module 0: Introduction - Data
PD Stefan Bosse - AFEML - Module 0: Introduction - Data
PD Stefan Bosse - AFEML - Module 0: Introduction - Data
Your data?
PD Stefan Bosse - AFEML - Module 0: Introduction - Data
PD Stefan Bosse - AFEML - Module 0: Introduction - Data Sources and Storage
Storage
Format and Coding
PD Stefan Bosse - AFEML - Module 0: Introduction - Data Examples
Anomaly detection in 3D X-ray CT image volumes (composite materials with defects) Materials 2022, 15(13), 4645; https://doi.org/10.3390/ma15134645
PD Stefan Bosse - AFEML - Module 0: Introduction - Data Examples
Breakage prediction with tensile test data (metal probes) SciForum ECSA 2020, https://doi.org/10.3390/ecsa-7-08279
PD Stefan Bosse - AFEML - Module 0: Introduction - Data Examples
Damage detection with Guided Ultrasonic Waves (composite material with pseudo defects) SysInt 2022, DOI: 10.1007/978-3-031-16281-7_35
PD Stefan Bosse - AFEML - Module 0: Introduction - Data Examples
Porosity analysis with metallurgical microphotographs of sliced surfaces (additive manufacturing) Materials 2022, 15(20), 7090; https://doi.org/10.3390/ma15207090
PD Stefan Bosse - AFEML - Module 0: Introduction - Data Examples
Feature marking of micro cracks and crack propagation of metal probes after applying stress AG Brandt, U Siegen
PD Stefan Bosse - AFEML - Module 0: Introduction - Features
A feature is any kind of aggregated or condensed information from data.
The output of a ML model is typically a categorical or metric feature variable.
PD Stefan Bosse - AFEML - Module 0: Introduction - Features
There are input and output features.
Examples: Statistical features of time data series (average, deviation, skewness, ..), frequency spectrum, ROI, wavelet transformation coefficients.
PD Stefan Bosse - AFEML - Module 0: Introduction - Features
Your features?
PD Stefan Bosse - AFEML - Module 0: Introduction - Methods and Algorithms
A typical "Data Mining" work flow consists of different stages:
Different data processing methods and algorithms are used in the different stages.
PD Stefan Bosse - AFEML - Module 0: Introduction - Methods and Algorithms
PD Stefan Bosse - AFEML - Module 0: Introduction - Methods and Algorithms
PD Stefan Bosse - AFEML - Module 0: Introduction - Methods and Algorithms
In general, data processing and machine learning is a functional composition.
ML searches mapping functions F(X): X → Y.
ML is commonly an approximation of a hypothesis model H ≈ F of an unknown real (world) model M
There are infinite approximations (hypothesis models), the so called model space
PD Stefan Bosse - AFEML - Module 0: Introduction - Methods and Algorithms
F(X,P):X×P→YargminP(Err)Err=|H−M|,H=F
F(X,P)S:X×P→YP={p0,p1,..,pS}Fi=p0+∑ipixi
PD Stefan Bosse - AFEML - Module 0: Introduction - Methods and Algorithms
PD Stefan Bosse - AFEML - Module 0: Introduction - Methods and Algorithms
Your methods?
PD Stefan Bosse - AFEML - Module 0: Introduction - Software
The Web Browser is the Laboratory!
WorkBook (fully self-contained HTML file) for the Web browser or node-webkit)
WorkShell (node.js worker, terminal console, optional)
SQLite3 Database (node.js)
wex (local access to file system)
Additional plug-ins (for WorkBook and WorkShell)
Notebook (fully self-contained digital lessons for the Web browser)
PD Stefan Bosse - AFEML - Module 0: Introduction - Software
Your software?
PD Stefan Bosse - AFEML - Module 0: Introduction - Software Architecture
Work flow architecture
PD Stefan Bosse - AFEML - Module 0: Introduction - Toolbox
... andy many more ...
PD Stefan Bosse - AFEML - Module 0: Introduction - R+
R+ is an R dialect with a run-time environment entirely programmed in JavaScript and hence usable in any Web browser.
Introduction to R programming
R+ extends the core R syntax (e.g., simplified list, vector, and matrix constructors)
PD Stefan Bosse - AFEML - Module 0: Introduction - R+
KISS: Keep it simple and safe and focus on algorithms and methods, not programming!
use math,plotm = matrix(runif(100),10,10)plot(m,auto.scale=TRUE)