simndt2b/demo/plate1n/rbook.signal.ml.json

1 line
8.1 KiB
JSON
Raw Normal View History

2025-09-15 10:21:52 +02:00
[{"Config":{"clearAuto":true,"strictScope":false,"group":"anonymous","mode":"r","file":"rbook.signal.ml","fontSize":14,"thisthat":true,"turbo":true,"user":"kapideje","docUrl":"localhost:5558","projUrl":"edu-9.de:5550","webclipTime":300,"webclipUrl":"localhost:9176","webxUrl":"localhost:9177","modules":["math.plugin","image.plugin"],"workdir":"/home/sbosse/proj/SimNDT2b/demo/plate1n","nw":"0.41.3","version":"1.15.10","wex":{"http":"http://localhost:11111","ws":"ws://localhost:11112"},"strict":true,"evalUser":"RRun","overlay":true}},{"Notes":[]},{},{"options":{"eval":"_PxEnUf_ZnVuY3Rpb24gKHRleHQpIHsKICAgICAgICAgIHZhciBjb250ZXh0ID0gUi5jb250ZXh0OwogICAgICAgICAgUi5ydW4odGV4dCxjb250ZXh0KQogICAgICAgICAgaWYgKFIud29ya2VyLmN1cnJlbnQpIHNldFRpbWVvdXQoZnVuY3Rpb24gKCkgewogICAgICAgICAgICAvLyB1cGRhdGUgd29ya2VyIGNvbnRleHQKICAgICAgICAgICAgdmFyIGluaXRzID0ge30sbW9kcz1bXTsKICAgICAgICAgICAgZm9yICh2YXIgaSBpbiBSLmxpYi5tb2R1bGVzKSB7CiAgICAgICAgICAgICAgdmFyIG1vZCA9IFIubGliLm1vZHVsZXNbaV0sCiAgICAgICAgICAgICAgICAgIE1PRCA9IG1vZC50b1VwcGVyQ2FzZSgpLAogICAgICAgICAgICAgICAgICBmb28gPSBNT0QrJyRJbml0JzsKICAgICAgICAgICAgICAvLyBDb2RlLnByaW50KCJVcGRhdGluZyB3b3JrZXIgUiAuLiAiLG1vZCk7CiAgICAgICAgICAgICAgaWYgKF9nbG9iYWxbZm9vXSkgIHsgbW9kcy5wdXNoKG1vZCk7IGluaXRzW2Zvb109X2dsb2JhbFtmb29dIH0KICAgICAgICAgICAgfQogICAgICAgICAgICBSLndvcmtlci5jdXJyZW50Lm1vZHVsZShpbml0cykKICAgICAgICAgIH0sMTAwKQogICAgICAgIH0=","label":"Install Libraries","mode":"r","overlay":2,"heightC":100,"heightE":10,"collapsed":false},"code":"install.packages({\"math\",\"ml\"})"},{"options":{"eval":"_PxEnUf_ZnVuY3Rpb24gKHRleHQpIHsKICAgICAgICAgIHZhciBjb250ZXh0ID0gUi5jb250ZXh0OwogICAgICAgICAgUi5ydW4odGV4dCxjb250ZXh0KQogICAgICAgIH0=","label":"Start Worker","mode":"r","overlay":2,"heightC":100,"heightE":10,"collapsed":false},"code":"worker()"},{"options":{"label":"Load Data","mode":"r","overlay":1,"evalUser":"RRun","heightC":30,"heightE":30,"collapsed":false},"code":"parameter { dir:'data', cut:40 }\nuse math,csv,file\nfiles = list.files(parameter.dir)\ndata = data.frame(x=NA,y=NA,data=NA)\nfor(file in files) {\n x = as.numeric(grep('x([0-9]+)',file,match=TRUE,value=TRUE))\n y = as.numeric(grep('y([0-9]+)',file,match=TRUE,value=TRUE))\n s = load.csv(parameter.dir+'/'+file,sep=',',auto.detect=FALSE)\n s = s[[1]] # s[,1]\n s = s[parameter.cut:length(s)]\n data=rbind(data,{x=x,y=y,data=s})\n}\ndata=shuffle(data)\nlogg(typeof(data))\nlogg(fivenum(data[1,\"data\"]))\nlogg(summary(data))"},{"options":{"eval":"_PxEnUf_ZnVuY3Rpb24gKHRleHQsZW52KSB7CiAgICAgICAgICAgICAgICAganNTY29wZS5ydW4odGV4dCxlbnYpCiAgICAgICAgICAgICAgICB9","mode":"r","evalUser":"RRun","overlay":1,"label":"Load Compact Data","heightC":30,"heightE":30,"collapsed":false},"code":"parameter { dir:'data2', cut:40, length:99 }\nuse math,csv,file\nfile = parameter.dir+\"/data_uniform.csv\"\ndata1 = read.csv(file)\ndata = data.frame(x=NA,y=NA,data=NA)\nfor (i in 1:nrow(data1)) {\n s = as.vector(data1[[i,parameter.cut:parameter.length]])\n x = data1[i,100]*500\n y = data1[i,101]*500\n data = rbind(data,{x=x,y=y,data=s})\n}\ndata=shuffle(data)\nlogg(typeof(data))\nlogg(fivenum(data[1,\"data\"]))\nlogg(summary(data))"},{"options":{"eval":"_PxEnUf_ZnVuY3Rpb24gKHRleHQsZW52KSB7CiAgICAgICAgICAgICAgICAganNTY29wZS5ydW4odGV4dCxlbnYpCiAgICAgICAgICAgICAgICB9","mode":"r","evalUser":"RRun","overlay":1,"label":"Plot Signal","heightC":30,"heightE":30,"collapsed":false},"code":"parameter { index:1 }\nuse plot\nsample = data[parameter.index,]\ndev.new(height=400)\nplot(sample$data,type='l',main='x'+sample$x+'-y'+sample$y)"},{"options":{"eval":"_PxEnUf_ZnVuY3Rpb24gKHRleHQsZW52KSB7CiAgICAgICAgICAgICAgICAganNTY29wZS5ydW4odGV4dCxlbnYpCiAgICAgICAgICAgICAgICB9","mode":"r","evalUser":"RRun","overlay":1,"label":"Data Preparation","heightC":30,"heightE":30,"collapsed":false},"code":"use math\ndata.x = lapply(as.list(data$data), function (v) {\n v/0.002\n})\ndata.y = as.list(lapply(data,function (row) {\n [row$x,row$y]/500\n}))\nlogg(typeof(data.x))\nlogg(minMax(data.x))\nlogg(typeof(data.y))\nlogg(minMax(data.y))\ndata.sample = split(seq(1,length(data.x)),prob=[0.8,0.2],