Wed 28 Aug 21:38:52 CEST 2024
This commit is contained in:
		
							parent
							
								
									6991c1db88
								
							
						
					
					
						commit
						62f810fecd
					
				
							
								
								
									
										289
									
								
								src/SimNDT/core/quadtree.pyx
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										289
									
								
								src/SimNDT/core/quadtree.pyx
									
									
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,289 @@ | |||
| cimport cython | ||||
| import math | ||||
| 
 | ||||
| import numpy as np | ||||
| cimport numpy as np | ||||
| 
 | ||||
| cdef extern from "math.h": | ||||
|     double sin(double x) | ||||
|     double cos(double x) | ||||
|     double sqrt(double x) | ||||
| 
 | ||||
| DEF pi = 3.141592 | ||||
| 
 | ||||
| 
 | ||||
| cdef class Rect: | ||||
|     cdef int x, y, w, h | ||||
|     def __init__(self,  int x,  int y,  int w,  int h): | ||||
|         self.x = x | ||||
|         self.y = y | ||||
|         self.w = w | ||||
|         self.h = h | ||||
| 
 | ||||
|     cpdef collide(self, int x, int y): | ||||
|         return ((self.x <= x <= self.x + self.w) and | ||||
|                  (self.y <= y <= self.y + self.h)) | ||||
| 
 | ||||
|     cpdef intersect(self, Rect rect): | ||||
|         return ((self.x < rect.x + rect.w) and (rect.x < self.x + self.w) and | ||||
|                 (self.y < rect.y + rect.h) and (rect.y < self.y + self.h)) | ||||
| 
 | ||||
| 
 | ||||
| cdef class Object: | ||||
|     cdef int x0, y0, w, h | ||||
| 
 | ||||
|     cpdef getRect(self): | ||||
|         return Rect(self.x0, self.y0, self.w, self.h) | ||||
| 
 | ||||
| 
 | ||||
| cdef class Circle(Object): | ||||
|     cdef: | ||||
|         int x, y,  r | ||||
|     def __init__(self, int x, int y, int r): | ||||
|         self.x = x | ||||
|         self.y = y | ||||
|         self.r = r | ||||
|         self.x0 = self.x - self.r | ||||
|         self.y0 = self.y - self.r | ||||
|         self.w =  2 * self.r | ||||
|         self.h = 2 * self.r | ||||
| 
 | ||||
|     cpdef area(self): | ||||
|         return pi * self.r**2 | ||||
| 
 | ||||
|     cpdef distance(self, int x, int y): | ||||
|         return math.sqrt((self.x - x)**2 + (self.y - y)**2) | ||||
| 
 | ||||
|     cpdef collide(self, x, y): | ||||
|         return (self.distance(x, y) <= self.r) | ||||
| 
 | ||||
|     cpdef intersect(self, Circle circle): | ||||
|         if (self.distance(circle.x, circle.y) <= self.r + circle.r): | ||||
|             return True | ||||
|         else: | ||||
|             return False | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| cdef class Ellipse2(Object): | ||||
| 
 | ||||
|     cdef public int x, y, a, b | ||||
|     cdef public double theta | ||||
|     cdef double k1_, k2_, k3_ | ||||
| 
 | ||||
|     def __init__(self, int x, int y, int da, int db, double theta): | ||||
|         cdef double c, s | ||||
| 
 | ||||
|         if (da > db): | ||||
|             a = da | ||||
|             b = db | ||||
|         else: | ||||
|             a = db | ||||
|             b = da | ||||
| 
 | ||||
|         c = cos(theta) | ||||
|         s = sin(theta) | ||||
| 
 | ||||
|         #Find k1_, k2_, k3_ - define when a point x,y is on the ellipse | ||||
|         k1_ = sqr(c / a) + sqr(s / b); | ||||
|         k2_ = 2 * s * c * ((1 / sqr(a)) - (1 / sqr(b))); | ||||
|         k3_ = sqr(s / a) + sqr(c / b); | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| cdef class Ellipse(Object): | ||||
| 
 | ||||
|     cdef int _x, _y, _a, _b | ||||
|     cdef double _theta | ||||
|     cdef Rect rect | ||||
| 
 | ||||
|     def __init__(self, int x, int y, int a, int b, double theta): | ||||
| 
 | ||||
|         cdef double xmin, xmax, ymin, ymax | ||||
|         cdef np.ndarray[np.float32_t, ndim=1] t, xx, yy | ||||
| 
 | ||||
| 
 | ||||
|         self._x = x | ||||
|         self._y = y | ||||
|         self._a = a | ||||
|         self._b = b | ||||
|         self._theta = theta | ||||
| 
 | ||||
|         t	= np.linspace(0,2*pi,20, endpoint=True, dtype=np.float32) | ||||
|         xx	= self._x  + self._a * np.cos(t) | ||||
|         yy	= self._y  + self._b * np.sin(t) | ||||
| 
 | ||||
|         xmin = np.min(xx) | ||||
|         xmax = np.max(xx) | ||||
|         ymin = np.min(yy) | ||||
|         ymax = np.max(yy) | ||||
| 
 | ||||
|         self.w = int(xmax-xmin) | ||||
|         self.h = int(ymax-ymin) | ||||
| 
 | ||||
|         self.x0 = int((xmax+xmin)/2.0) | ||||
|         self.y0 = int((ymax+ymin)/2.0) | ||||
| 
 | ||||
|         self.rect = self.getRect() | ||||
| 
 | ||||
|     cpdef x(self): | ||||
|         return self._x | ||||
| 
 | ||||
|     cpdef y(self): | ||||
|         return self._y | ||||
| 
 | ||||
|     cpdef a(self): | ||||
|         return self._a | ||||
| 
 | ||||
|     cpdef b(self): | ||||
|         return self._b | ||||
| 
 | ||||
|     cpdef theta(self): | ||||
|         return self._theta | ||||
| 
 | ||||
| 
 | ||||
|     cpdef area(self): | ||||
|         return pi * self._a * self._b | ||||
| 
 | ||||
| 
 | ||||
|     cpdef intersect2(self, Ellipse ellipse): | ||||
| 
 | ||||
|         return ( (np.abs(self.rect.x - ellipse.rect.x) * 2.0 < (self.rect.w + ellipse.rect.w) ) and | ||||
|                (np.abs(self.rect.y - ellipse.rect.y) * 2.0 < (self.rect.h + ellipse.rect.h)) ) | ||||
| 
 | ||||
| 
 | ||||
|     cpdef intersect(self, Ellipse ellipse): | ||||
| 
 | ||||
|         cdef double c, Mb, d, d1, d2, cost, sint | ||||
|         cdef double a2, b2, tmp | ||||
| 
 | ||||
|         a2 = ellipse.a()**2 | ||||
|         b2 = ellipse.b()**2 | ||||
| 
 | ||||
|         cost  =	 cos(ellipse.theta()) | ||||
|         sint  =	 sin(ellipse.theta()) | ||||
| 
 | ||||
| 
 | ||||
|         tmp = ( ( ( (ellipse.x() - self.x())* cost + ( ellipse.y() - self.y())* sint )**2 )/(a2) + | ||||
|                 ( ( (ellipse.x() - self.x())* sint - ( ellipse.y() - self.y())* cost )**2 )/(b2) ) | ||||
| 
 | ||||
|         if tmp <= 1.0: | ||||
|             return True | ||||
| 
 | ||||
| 
 | ||||
|         c =	sqrt(self._a**2 - self._b**2) | ||||
|         cost  =	 c * cos(self._theta) | ||||
|         sint  =	 c * sin(self._theta) | ||||
| 
 | ||||
|         d1	= (ellipse.x() - self._x - cost)**2 + (ellipse.y() - self._y - sint)**2 | ||||
|         d1	= sqrt(d1) | ||||
|         d2	= (ellipse.x() - self._x + cost)**2 + (ellipse.y() - self._y + sint)**2 | ||||
|         d2	= sqrt(d2) | ||||
|         d	= sqrt( (self._x-ellipse.x())**2 + (self._y-ellipse.y())**2 ) | ||||
| 
 | ||||
|         if self._a >= 8*ellipse.a(): | ||||
|             Mb	= 0.15*self._a + ellipse.a() | ||||
| 
 | ||||
|         elif ellipse.a() >= 8*self._a: | ||||
|             Mb	= self._a + 0.15*ellipse.a() | ||||
| 
 | ||||
|         else: | ||||
|             Mb	= self._a + ellipse.a() | ||||
| 
 | ||||
|         if	(d1+d2 <= Mb) or (d <= Mb): | ||||
|             return True | ||||
| 
 | ||||
|         return False | ||||
| 
 | ||||
| 
 | ||||
| cdef class Quadtree: | ||||
|     cdef Quadtree ne, se, sw, nw | ||||
|     cdef Rect rect | ||||
|     cdef int depth | ||||
|     cdef list objs | ||||
| 
 | ||||
|     def __init__(self, int depth, Rect rect): | ||||
|         cdef int w, h, x, y | ||||
| 
 | ||||
|         self.rect  = rect | ||||
|         self.depth = depth | ||||
|         self.ne = None | ||||
|         self.se = None | ||||
|         self.sw = None | ||||
|         self.nw = None | ||||
|         self.objs = list() | ||||
|         if (depth > 1): | ||||
|             w = self.rect.w / 2 | ||||
|             h = self.rect.h / 2 | ||||
|             x = self.rect.x + w | ||||
|             y = self.rect.y | ||||
|             self.ne = Quadtree(depth-1, Rect(x, y, w, h)) | ||||
|             w = self.rect.w / 2 | ||||
|             h = self.rect.h / 2 | ||||
|             x = self.rect.x + w | ||||
|             y = self.rect.y + h | ||||
|             self.se = Quadtree(depth-1, Rect(x, y, w, h)) | ||||
|             w = self.rect.w / 2 | ||||
|             h = self.rect.h / 2 | ||||
|             x = self.rect.x | ||||
|             y = self.rect.y + h | ||||
|             self.sw = Quadtree(depth-1, Rect(x, y, w, h)) | ||||
|             w = self.rect.w / 2 | ||||
|             h = self.rect.h / 2 | ||||
|             x = self.rect.x | ||||
|             y = self.rect.y | ||||
|             self.nw = Quadtree(depth-1, Rect(x, y, w, h)) | ||||
| 
 | ||||
|     def insert(self, Object obj): | ||||
| 
 | ||||
|         if (not self.rect.intersect(obj.getRect())): | ||||
|             return | ||||
|         if (self.depth == 1): | ||||
|             self.objs.append(obj) | ||||
|         else: | ||||
|             self.ne.insert(obj) | ||||
|             self.se.insert(obj) | ||||
|             self.sw.insert(obj) | ||||
|             self.nw.insert(obj) | ||||
| 
 | ||||
|     def query(self, Object obj): | ||||
| 
 | ||||
|         inRange = list() | ||||
|         if (not self.rect.intersect(obj.getRect())): | ||||
|             return inRange | ||||
|         if (self.depth == 1): | ||||
|             for o in self.objs: | ||||
|                 if (obj.intersect(o)): | ||||
|                     inRange.append(o) | ||||
|         else: | ||||
|             inRange.extend(self.ne.query(obj)) | ||||
|             inRange.extend(self.se.query(obj)) | ||||
|             inRange.extend(self.sw.query(obj)) | ||||
|             inRange.extend(self.nw.query(obj)) | ||||
|         return inRange | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| def ellipseMatrix(int x0, int y0, int a, int b, double theta, | ||||
|                   np.ndarray[np.int32_t, ndim=2] Image, int Color, | ||||
|                   np.ndarray[np.int32_t, ndim=2] XX,  np.ndarray[np.int32_t, ndim=2] YY): | ||||
| 
 | ||||
|     cdef int a2,b2 | ||||
|     cdef double cost, sint | ||||
| 
 | ||||
|     a2 = a**2 | ||||
|     b2 = b**2 | ||||
|     cost = cos(theta) | ||||
|     sint = sin(theta) | ||||
| 
 | ||||
|     Ellipse = ( ( ( (XX-x0)*cost+(YY-y0)*sint )**2 )/(a2) + | ||||
|                 ( ( (XX-x0)*sint-(YY-y0)*cost )**2 )/(b2) ) | ||||
| 
 | ||||
|     Image[Ellipse < 1.0] = Color | ||||
|     return Image | ||||
		Loading…
	
		Reference in New Issue
	
	Block a user