65 lines
		
	
	
		
			646 B
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
			
		
		
	
	
			65 lines
		
	
	
		
			646 B
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
// MLP Function Approximation f(x)=y=x/2^3-5
 | 
						|
 | 
						|
var x = [
 | 
						|
  0,
 | 
						|
  1,
 | 
						|
  2,
 | 
						|
  3,
 | 
						|
  4,
 | 
						|
  5,
 | 
						|
  6,
 | 
						|
  7,
 | 
						|
  8,
 | 
						|
  9,
 | 
						|
  10,
 | 
						|
  11,
 | 
						|
  12,
 | 
						|
  13,
 | 
						|
  14,
 | 
						|
  15,
 | 
						|
  16,
 | 
						|
  17,
 | 
						|
  18,
 | 
						|
  19
 | 
						|
];
 | 
						|
 | 
						|
x=ml.stats.utils.wrap(x);
 | 
						|
 | 
						|
// y=Math.pow(x/2,3)-5
 | 
						|
var y = [ 
 | 
						|
  -5,
 | 
						|
  -4.875,
 | 
						|
  -4,
 | 
						|
  -1.625,
 | 
						|
  3,
 | 
						|
  10.625,
 | 
						|
  22,
 | 
						|
  37.875,
 | 
						|
  59,
 | 
						|
  86.125,
 | 
						|
  120,
 | 
						|
  161.375,
 | 
						|
  211,
 | 
						|
  269.625,
 | 
						|
  338,
 | 
						|
  416.875,
 | 
						|
  507,
 | 
						|
  609.125,
 | 
						|
  724,
 | 
						|
  852.375 
 | 
						|
];
 | 
						|
 | 
						|
var model = ml.learn({
 | 
						|
    algorithm : ml.ML.MLP,
 | 
						|
    x : x,
 | 
						|
    y : y,
 | 
						|
    normalize:true,
 | 
						|
    regression: true,
 | 
						|
    epochs : 1000000,
 | 
						|
    hidden_layers : [3,4]
 | 
						|
});
 | 
						|
 | 
						|
print(model)
 | 
						|
print(merge(ml.stats.utils.wrap(ml.predict(model,x)),y,'c'));
 | 
						|
 |