135 lines
		
	
	
		
			3.6 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
			
		
		
	
	
			135 lines
		
	
	
		
			3.6 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
// Maze of Torment World
 | 
						|
// Temporal Difference Learning (TD)
 | 
						|
 | 
						|
var height=7,width=7,start=0;
 | 
						|
// 0: free place, 1: start, 2: destination, -1: wall
 | 
						|
var f=0,s=1,d=2,w=-1
 | 
						|
var maze = [
 | 
						|
[s,f,w,d,w,f,f], 
 | 
						|
[f,f,w,f,w,f,f], 
 | 
						|
[f,f,w,f,f,f,f], 
 | 
						|
[f,f,w,w,w,f,f], 
 | 
						|
[f,f,f,f,f,f,f], 
 | 
						|
[f,f,f,f,w,w,w], 
 | 
						|
[f,w,f,f,f,f,f], 
 | 
						|
]
 | 
						|
 | 
						|
var states = []
 | 
						|
maze.forEach(function (row) {
 | 
						|
  states=states.concat(row)
 | 
						|
})
 | 
						|
 | 
						|
var way = []
 | 
						|
function reset (pr) {
 | 
						|
  if (pr) print(way.join('\n'))
 | 
						|
  way = maze.map(function (row) { 
 | 
						|
    return row.map(function (col) { return col==s?1:(col==w?'w':0) })})
 | 
						|
  env.steps=0;
 | 
						|
}
 | 
						|
var actions = ['left','right','up','down']
 | 
						|
 | 
						|
var env = {};
 | 
						|
 | 
						|
env.steps = 0;
 | 
						|
env.iteration = 0;
 | 
						|
 | 
						|
// required by learner
 | 
						|
env.getNumStates      = function() { return height*width; }
 | 
						|
env.getMaxNumActions  = function() { return actions.length; }
 | 
						|
env.nextState = function(state,action) {
 | 
						|
  var nx, ny, nextstate;
 | 
						|
  var x = env.stox(state);
 | 
						|
  var y = env.stoy(state);
 | 
						|
  switch (states[state]) {
 | 
						|
    case f: 
 | 
						|
    case s: 
 | 
						|
      // free place to move around
 | 
						|
      switch (action) {
 | 
						|
        case 'left'  : nx=x-1; ny=y; break;
 | 
						|
        case 'right' : nx=x+1; ny=y; break;
 | 
						|
        case 'up'    : ny=y-1; nx=x; break;
 | 
						|
        case 'down'  : ny=y+1; nx=x; break;
 | 
						|
      }
 | 
						|
      nextstate = ny*width+nx;
 | 
						|
      way[ny][nx]=1;
 | 
						|
      env.steps++;
 | 
						|
      break;
 | 
						|
    case w:
 | 
						|
      // cliff! oh no! Should not happend - see below
 | 
						|
      // print('Back to start...')
 | 
						|
      nextstate=start;
 | 
						|
      reset(false)
 | 
						|
      env.iteration++;
 | 
						|
      break;
 | 
						|
    case d:
 | 
						|
      // agent wins! teleport to start
 | 
						|
      print('['+env.iteration+'] Found destination !!!!!!! steps='+env.steps)
 | 
						|
      reset(true);
 | 
						|
      nextstate=start;
 | 
						|
      env.iteration++;
 | 
						|
      break;
 | 
						|
  }
 | 
						|
//print(state,action,nextstate)
 | 
						|
  return nextstate;
 | 
						|
}
 | 
						|
env.reward = function (state,action,nextstate) {
 | 
						|
  // reward of being in s, taking action a, and ending up in ns
 | 
						|
  var reward;
 | 
						|
  // If the destination was found, weight the reward with the number of steps
 | 
						|
  // return best reward for shortest path
 | 
						|
  if (states[state]==d) reward = 1.0-(env.steps/100)
 | 
						|
  else if (states[state]==w) reward = -1;
 | 
						|
  else reward = 0;
 | 
						|
    return reward;
 | 
						|
}
 | 
						|
env.allowedActions    = function(state) { 
 | 
						|
  var x = env.stox(state), y = env.stoy(state);
 | 
						|
  var actions=[];
 | 
						|
  if (x>0) actions.push('left');
 | 
						|
  if (y>0) actions.push('up');
 | 
						|
  if (x<width-1) actions.push('right');
 | 
						|
  if (y<height-1) actions.push('down');
 | 
						|
  return actions 
 | 
						|
}
 | 
						|
 | 
						|
// utils
 | 
						|
env.stox = function (s) { return s % width }
 | 
						|
env.stoy = function (s) { return Math.floor(s / width) }
 | 
						|
 | 
						|
reset()
 | 
						|
 | 
						|
// create the DQN agent
 | 
						|
var model = ml.learn({
 | 
						|
  algorithm   : ml.ML.RL,
 | 
						|
  kind        : ml.ML.TDAgent,
 | 
						|
  actions     : actions,
 | 
						|
  
 | 
						|
  // specs
 | 
						|
  alpha       : 0.1,  // value function learning rate
 | 
						|
  beta        : 0.2,  // learning rate for smooth policy update
 | 
						|
  epsilon     : 0.2,  // initial epsilon for epsilon-greedy policy, [0, 1)
 | 
						|
  gamma       : 0.5,  // discount factor, [0, 1)
 | 
						|
  lambda      : 0,    // eligibility trace decay, [0,1). 0 = no eligibility traces
 | 
						|
  planN       : 5,   // number of planning steps per iteration. 0 = no planning
 | 
						|
  replacing_traces : true,
 | 
						|
  smooth_policy_update : false,
 | 
						|
  update : 'qlearn',  // 'qlearn' or 'sarsa'
 | 
						|
  
 | 
						|
  environment : env
 | 
						|
}); 
 | 
						|
 | 
						|
print(model)
 | 
						|
print(toJSON(model).length+' Bytes')
 | 
						|
 | 
						|
 | 
						|
var state = start;  // uppel left corner
 | 
						|
var timer = setInterval(function(){ // start the learning loop
 | 
						|
  var action = ml.action(model,state); // s is an integer
 | 
						|
  //... execute action in environment and get the reward
 | 
						|
  // print(state,action,states[state])
 | 
						|
  var ns = env.nextState(state,action);
 | 
						|
  var reward = env.reward(ns)-0.01
 | 
						|
  ml.update(model,reward)
 | 
						|
  state = ns
 | 
						|
}, 1);
 |