432 lines
11 KiB
JavaScript
432 lines
11 KiB
JavaScript
global.TOP='/home/sbosse/proj/jam/js';
|
|
require(TOP+'/top/module')([process.cwd(),TOP]);
|
|
var Comp = Require('com/compat');
|
|
var Io = Require('com/io');
|
|
var Aios = Require('jam/aios');
|
|
var Db = Require('db/db');
|
|
var Fs = require('fs');
|
|
var db = Db.Sqlc('/tmp/sqld',1);
|
|
var Ml = Require('ml/ml');
|
|
var ml = Ml.agent;
|
|
var _ = Require('ml/lodash');
|
|
|
|
var repl;
|
|
db.init();
|
|
var datasets=[0,1,2,3,4,5];
|
|
var features=[];
|
|
var eps=10;
|
|
var class_name='load';
|
|
var roid = 1;
|
|
var roi0 = {x:3,y:4};
|
|
|
|
var dataset=0;
|
|
var training_data=[];
|
|
var model;
|
|
//console.log(ml.entropy([31,11,10],10));
|
|
|
|
function entropyEps(vals,eps) {
|
|
var uniqueVals = _.unique(vals);
|
|
var probs = uniqueVals.map(function(x) {
|
|
return probEps(x, vals, eps)
|
|
});
|
|
|
|
var logVals = probs.map(function(p) {
|
|
return -p * log2(p)
|
|
});
|
|
|
|
return logVals.reduce(function(a, b) {
|
|
return a + b
|
|
}, 0);
|
|
}
|
|
|
|
// with additional 2*epsilon interval, only applicable to numerical values
|
|
function probEps(value, list, eps) {
|
|
var occurrences = _.filter(list, function(element) {
|
|
return (element >= (value-eps)) && (element <= (value+eps));
|
|
});
|
|
|
|
var numOccurrences = occurrences.length;
|
|
var numElements = list.length;
|
|
return numOccurrences / numElements;
|
|
}
|
|
|
|
/**
|
|
* Computes Log with base-2
|
|
* @private
|
|
*/
|
|
function log2(n) {
|
|
return Math.log(n) / Math.log(2);
|
|
}
|
|
|
|
|
|
var NODE_TYPES = {
|
|
RESULT: 'result',
|
|
FEATURE: 'feature',
|
|
FEATURE_RANGE: 'feature_range',
|
|
FEATURE_VALUE: 'feature_value'
|
|
};
|
|
|
|
function Result(key) {
|
|
return {
|
|
type:NODE_TYPES.RESULT,
|
|
name:key
|
|
}
|
|
}
|
|
|
|
function Feature(name,vals) {
|
|
return {
|
|
type:NODE_TYPES.FEATURE,
|
|
name:name,
|
|
vals:vals
|
|
}
|
|
}
|
|
|
|
// A value can be a scalar or a range {a,b} object
|
|
function Value(val,child) {
|
|
return {
|
|
type:NODE_TYPES.FEATURE_VALUE,
|
|
val:val,
|
|
child:child
|
|
}
|
|
}
|
|
|
|
function print(model) {
|
|
var line='',sep;
|
|
if (!model) return '';
|
|
switch (model.type) {
|
|
case NODE_TYPES.RESULT:
|
|
return ' -> '+model.name;
|
|
case NODE_TYPES.FEATURE:
|
|
line='('+model.name+'?';
|
|
sep='';
|
|
Comp.array.iter(model.vals,function (v) {
|
|
line += sep+print(v);
|
|
sep=',';
|
|
});
|
|
return line+')';
|
|
case NODE_TYPES.FEATURE_VALUE:
|
|
return ' '+(model.val.a==undefined?model.val:'['+model.val.a+','+model.val.b+']')+
|
|
':'+print(model.child);
|
|
}
|
|
return 'model?';
|
|
}
|
|
|
|
|
|
/**
|
|
* Finds element with highest occurrence in a list
|
|
* @private
|
|
*/
|
|
function mostCommon(list) {
|
|
var elementFrequencyMap = {};
|
|
var largestFrequency = -1;
|
|
var mostCommonElement = null;
|
|
|
|
list.forEach(function(element) {
|
|
var elementFrequency = (elementFrequencyMap[element] || 0) + 1;
|
|
elementFrequencyMap[element] = elementFrequency;
|
|
|
|
if (largestFrequency < elementFrequency) {
|
|
mostCommonElement = element;
|
|
largestFrequency = elementFrequency;
|
|
}
|
|
});
|
|
|
|
return mostCommonElement;
|
|
}
|
|
|
|
function addVal(v1,v2) {
|
|
return v1+v2; // TODO
|
|
}
|
|
|
|
function lowerBound(v) {
|
|
if (v.a==undefined) return v; else return v.a;
|
|
}
|
|
|
|
function upperBound(v) {
|
|
if (v.b==undefined) return v; else return v.b;
|
|
}
|
|
|
|
function Bounds(vl,v) {
|
|
if (vl.length==0) return {a:v,b:v};
|
|
else if (v==undefined) return {a:Min(vl),b:Max(vl)};
|
|
else return {a:Min([Min(vl),v]),b:Max([Max(vl),v])};
|
|
}
|
|
|
|
function overlap(v1,v2) {
|
|
return (upperBound(v1) >= lowerBound(v2) && upperBound(v1) <= upperBound(v2)) ||
|
|
(upperBound(v2) >= lowerBound(v1) && upperBound(v2) <= upperBound(v1))
|
|
}
|
|
|
|
function containsVal(vl,v) {
|
|
for (var i in vl) {
|
|
var v2=vl[i];
|
|
if (overlap(v,v2)) return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
function Min(vals) {
|
|
var min=none;
|
|
Comp.array.iter(vals,function (val) {
|
|
if (min==none) min=(val.a==undefined?val:val.a);
|
|
else min=val.a==undefined?(val<min?val:min):(val.a<min?val.a:min);
|
|
});
|
|
return min;
|
|
}
|
|
|
|
function Max(vals) {
|
|
var max=none;
|
|
Comp.array.iter(vals,function (val) {
|
|
if (max==none) max=(val.b==undefined?val:val.b);
|
|
else max=(val.b==undefined?(val>max?val:max):(val.b>max?val.a:max));
|
|
});
|
|
return max;
|
|
}
|
|
|
|
function centerVal(v) {
|
|
if (v.a==undefined) return v; else return (v.a+v.b)/2;
|
|
}
|
|
|
|
function distanceVal (v1,v2) {
|
|
return Math.abs(centerVal(v1)-centerVal(v2));
|
|
}
|
|
|
|
|
|
function getBestFeatures(data,target,features,eps) {
|
|
var bestfeatures=[];
|
|
function deviation(vals) {
|
|
var n = vals.length;
|
|
var mu=Comp.array.sum(vals,function (val) {
|
|
return (lowerBound(val)+upperBound(val))/2;
|
|
})/n;
|
|
var dev=Comp.array.sum(vals,function (val) {
|
|
return Math.pow(((lowerBound(val)+upperBound(val))/2)-mu,2);
|
|
})/n;
|
|
return dev;
|
|
}
|
|
for (var feature in features) {
|
|
var vals=_.pluck(data, features[feature]);
|
|
var e = entropyEps(vals,eps);
|
|
var d = deviation(vals);
|
|
var min = Min(vals);
|
|
var max = Max(vals);
|
|
bestfeatures.push({e:e,d:d,range:{a:min,b:max},name:features[feature]});
|
|
}
|
|
bestfeatures.sort(function (ef1,ef2) {
|
|
if (ef1.e > ef2.e) return -1; else return 1;
|
|
});
|
|
return bestfeatures;
|
|
}
|
|
|
|
function getPossibleValues(data,feature) {
|
|
return Comp.array.sort(_.pluck(data, feature), function (x,y) {
|
|
if (upperBound(x) < lowerBound(y)) return -1; else return 1; // increasing value order
|
|
});
|
|
}
|
|
|
|
function add_training_set(set) {
|
|
// Merge a data set with an existing for a specific key; create value ranges
|
|
training_data.push(set);
|
|
}
|
|
|
|
function partitionVals(vals,eps) {
|
|
var last=none;
|
|
var partitions=[];
|
|
var partition=[];
|
|
for(var i in vals) {
|
|
var val0=vals[i];
|
|
var val1=vals[i-1];
|
|
|
|
if (val1==undefined) partition.push(val0);
|
|
else if ( upperBound(val0) < upperBound(addVal(val1,2*eps))) partition.push(val0);
|
|
else {
|
|
partitions.push(partition);
|
|
partition=[val0];
|
|
}
|
|
}
|
|
if (partition.length>0) partitions.push(partition);
|
|
return partitions;
|
|
}
|
|
|
|
/**
|
|
* Creates a new tree
|
|
*/
|
|
function createTree(data, target, features, eps) {
|
|
var _newS,child_node,bounds;
|
|
|
|
var targets = _.unique(_.pluck(data, target));
|
|
var classes = _.unique(_.pluck(training_data, class_name));
|
|
|
|
console.log(data);
|
|
console.log(features);
|
|
|
|
// Aios.aios.log('createTree:'+targets.length);
|
|
if (targets.length == 1) return Result(targets[0]);
|
|
|
|
if (features.length == 0) {
|
|
var topTarget = mostCommon(targets);
|
|
return Result(topTarget)
|
|
}
|
|
var bestFeatures = getBestFeatures(data, target, features, eps);
|
|
var bestFeature = bestFeatures[0];
|
|
var remainingFeatures = Comp.array.filtermap(bestFeatures,function (feat) {
|
|
if (feat.name!=bestFeature.name) return feat.name;
|
|
else return none;
|
|
});
|
|
var possibleValues = getPossibleValues(data,bestFeature.name);
|
|
var vals=[];
|
|
|
|
var partitions=partitionVals(possibleValues,eps);
|
|
|
|
console.log(partitions);
|
|
console.log(bestFeatures);
|
|
//console.log(possibleValues);
|
|
if (partitions.length==1) {
|
|
// no further 2*eps separation possible, find best feature by largest distance
|
|
// resort beat feature list with respect to value deviation
|
|
bestFeatures.sort(function (ef1,ef2) {
|
|
if (ef1.d > ef2.d) return -1; else return 1;
|
|
});
|
|
bestFeature = bestFeatures[0];
|
|
possibleValues = getPossibleValues(data,bestFeature.name);
|
|
Comp.array.iter(possibleValues,function (val,i) {
|
|
|
|
_newS = data.filter(function(x) {
|
|
console.log(x[bestFeature.name],val,overlap(val,x[bestFeature.name]))
|
|
|
|
return overlap(val,x[bestFeature.name]);
|
|
});
|
|
child_node = Value(val);
|
|
child_node.child = createTree(_newS, target, remainingFeatures, eps);
|
|
//console.log(_newS);
|
|
vals.push(child_node);
|
|
})
|
|
|
|
} else Comp.array.iter(partitions,function (partition,i) {
|
|
|
|
_newS = data.filter(function(x) {
|
|
// console.log(x[bestFeature.name],v,overlap(x[bestFeature.name],v))
|
|
return containsVal(partition,x[bestFeature.name]);
|
|
});
|
|
bounds = Bounds(partition);
|
|
child_node = Value(eps==0?v:{a:bounds.a-eps,b:bounds.b+eps});
|
|
child_node.child = createTree(_newS, target, remainingFeatures, eps);
|
|
//console.log(_newS);
|
|
vals.push(child_node);
|
|
});
|
|
|
|
return Feature(bestFeature.name,vals);
|
|
}
|
|
|
|
function depth(model) {
|
|
switch (model.type) {
|
|
case NODE_TYPES.RESULT: return 0;
|
|
case NODE_TYPES.FEATURE:
|
|
return 1+Comp.array.max(model.vals,function (val) {
|
|
return depth(val);
|
|
});
|
|
case NODE_TYPES.FEATURE_VALUE:
|
|
return depth(model.child);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
function results(model) {
|
|
var line='',sep;
|
|
if (!model) return '';
|
|
switch (model.type) {
|
|
case NODE_TYPES.RESULT:
|
|
return model.name;
|
|
case NODE_TYPES.FEATURE:
|
|
sep='';
|
|
line='';
|
|
Comp.array.iter(model.vals,function (v) {
|
|
line += sep+results(v);
|
|
sep=',';
|
|
});
|
|
return line;
|
|
case NODE_TYPES.FEATURE_VALUE:
|
|
return results(model.child);
|
|
}
|
|
return 'result?';
|
|
}
|
|
|
|
|
|
function nearestVal(vals,sample,fun) {
|
|
var best=none;
|
|
for (var v in vals) {
|
|
var d=fun?distanceVal(fun(vals[v]),sample):distanceVal(vals[v],sample);
|
|
if (best==none)
|
|
best={v:vals[v],d:d};
|
|
else if (best.d > d)
|
|
best={v:vals[v],d:d};
|
|
}
|
|
if (best) return best.v;
|
|
else return none;
|
|
}
|
|
|
|
function predict(model,sample) {
|
|
var root = model;
|
|
while (root && root.type !== NODE_TYPES.RESULT) {
|
|
var attr = root.name;
|
|
var sampleVal = sample[attr];
|
|
var childNode = nearestVal(root.vals,sampleVal,function (node) {
|
|
return node.val;
|
|
});
|
|
|
|
if (childNode){
|
|
root = childNode.child;
|
|
} else {
|
|
root = none;
|
|
}
|
|
}
|
|
if (root) return root.name||root.val;
|
|
else return none;
|
|
};
|
|
|
|
var datasets=[];
|
|
var noise=function () {
|
|
return Comp.random.range(-eps/2,eps/2);
|
|
};
|
|
|
|
for (dataset=0;dataset<=5;dataset++) {
|
|
var training_set={};
|
|
var data={};
|
|
var matA = db.readMatrix('sensorsA'+dataset);
|
|
var matB = db.readMatrix('sensorsB'+dataset);
|
|
var matAs = Aios.aios.matrix(3,3);
|
|
var matBs = Aios.aios.matrix(3,3);
|
|
|
|
var n=0;
|
|
features=[];
|
|
for (j = roi0.y-roid;j <= (roi0.y+roid);j++) {
|
|
for (i = roi0.x-roid;i <= (roi0.x+roid);i++) {
|
|
matAs[j-(roi0.y-roid)][i-(roi0.x-roid)]=matA[j][i];
|
|
matBs[j-(roi0.y-roid)][i-(roi0.x-roid)]=matB[j][i];
|
|
training_set['A'+n]=matA[j][i]+noise();
|
|
training_set['B'+n]=matB[j][i]+noise();
|
|
data['A'+n]=matA[j][i]+noise();
|
|
data['B'+n]=matB[j][i]+noise();
|
|
features.push('A'+n);
|
|
features.push('B'+n);
|
|
n++;
|
|
}
|
|
}
|
|
training_set[class_name]='L'+dataset;
|
|
add_training_set(training_set);
|
|
datasets.push(data);
|
|
}
|
|
//console.log(training_data);
|
|
var bestfeatures=getBestFeatures(training_data, class_name, features, eps);;
|
|
var classes=_.unique(_.pluck(training_data, class_name));
|
|
var model = createTree(training_data,class_name,features,eps);
|
|
console.log(print(model));
|
|
console.log(depth(model));
|
|
console.log(results(model));
|
|
console.log(predict(model,datasets[0]));
|
|
console.log(predict(model,datasets[1]));
|
|
console.log(predict(model,datasets[2]));
|
|
console.log(predict(model,datasets[3]));
|
|
console.log(predict(model,datasets[4]));
|
|
console.log(predict(model,datasets[5]));
|