jam/js/ml/rl.js

1190 lines
34 KiB
JavaScript

/**
** ==============================
** O O O OOOO
** O O O O O O
** O O O O O O
** OOOO OOOO O OOO OOOO
** O O O O O O O
** O O O O O O O
** OOOO OOOO O O OOOO
** ==============================
** Dr. Stefan Bosse http://www.bsslab.de
**
** COPYRIGHT: THIS SOFTWARE, EXECUTABLE AND SOURCE CODE IS OWNED
** BY THE AUTHOR(S).
** THIS SOURCE CODE MAY NOT BE COPIED, EXTRACTED,
** MODIFIED, OR OTHERWISE USED IN A CONTEXT
** OUTSIDE OF THE SOFTWARE SYSTEM.
**
** $AUTHORS: Ankit Kuwadekar, Stefan Bosse
** $INITIAL: (C) 2015, Andrej Karpathy
** $MODIFIED: (C) 2006-2019 bLAB by sbosse
** $VERSION: 1.1.2
**
** $INFO:
**
** Reinforcement Learning module that implements several common RL algorithms.
** Portable models (TDAgent/DPAgent/DQNAgent)
**
** $ENDOFINFO
*/
"use strict";
var options = {
version:'1.1.2'
}
var Io = Require('com/io')
var R = module.exports; // the Recurrent library
// Utility fun
function assert(condition, message) {
// from http://stackoverflow.com/questions/15313418/javascript-assert
if (!condition) {
message = message || "Assertion failed";
if (typeof Error !== "undefined") {
throw new Error(message);
}
throw message; // Fallback
}
}
// Random numbers utils
var return_v = false;
var v_val = 0.0;
var gaussRandom = function() {
if(return_v) {
return_v = false;
return v_val;
}
var u = 2*Math.random()-1;
var v = 2*Math.random()-1;
var r = u*u + v*v;
if(r == 0 || r > 1) return gaussRandom();
var c = Math.sqrt(-2*Math.log(r)/r);
v_val = v*c; // cache this
return_v = true;
return u*c;
}
var randf = function(a, b) { return Math.random()*(b-a)+a; }
var randi = function(a, b) { return Math.floor(Math.random()*(b-a)+a); }
var randn = function(mu, std){ return mu+gaussRandom()*std; }
// helper function returns array of zeros of length n
// and uses typed arrays if available
var zeros = function(n) {
if(typeof(n)==='undefined' || isNaN(n)) { return []; }
if(typeof ArrayBuffer === 'undefined') {
// lacking browser support
var arr = new Array(n);
for(var i=0;i<n;i++) { arr[i] = 0; }
return arr;
} else {
return new Float64Array(n);
}
}
// Mat holds a matrix
var Mat = function(n,d) {
var M = {}
// n is number of rows d is number of columns
M.n = n;
M.d = d;
M.w = zeros(n * d);
M.dw = zeros(n * d);
return M;
}
Mat.code = {
get: function(M,row, col) {
// slow but careful accessor function
// we want row-major order
var ix = (M.d * row) + col;
assert(ix >= 0 && ix < M.w.length);
return M.w[ix];
},
set: function(M, row, col, v) {
// slow but careful accessor function
var ix = (M.d * row) + col;
assert(ix >= 0 && ix < M.w.length);
M.w[ix] = v;
},
setFrom: function(M, arr) {
for(var i=0,n=arr.length;i<n;i++) {
M.w[i] = arr[i];
}
},
setColumn: function(M, m, i) {
for(var q=0,n=m.w.length;q<n;q++) {
M.w[(M.d * q) + i] = m.w[q];
}
},
toJSON: function(M) {
var json = {};
json['n'] = M.n;
json['d'] = M.d;
json['w'] = M.w;
return json;
},
fromJSON: function(M, json) {
M.n = json.n;
M.d = json.d;
M.w = zeros(M.n * M.d);
M.dw = zeros(M.n * M.d);
for(var i=0,n=M.n * M.d;i<n;i++) {
M.w[i] = json.w[i]; // copy over weights
}
}
}
var copyMat = function(b) {
var a = Mat(b.n, b.d);
Mat.code.setFrom(a, b.w);
return a;
}
var copyNet = function(net) {
// nets are (k,v) pairs with k = string key, v = Mat()
var new_net = {};
for(var p in net) {
if(net.hasOwnProperty(p)){
new_net[p] = copyMat(net[p]);
}
}
return new_net;
}
var updateMat = function(m, alpha) {
// updates in place
for(var i=0,n=m.n*m.d;i<n;i++) {
if(m.dw[i] !== 0) {
m.w[i] += - alpha * m.dw[i];
m.dw[i] = 0;
}
}
}
var updateNet = function(net, alpha) {
for(var p in net) {
if(net.hasOwnProperty(p)){
updateMat(net[p], alpha);
}
}
}
var netToJSON = function(net) {
var j = {};
for(var p in net) {
if(net.hasOwnProperty(p)){
j[p] = Mat.code.toJSON(net[p]);
}
}
return j;
}
var netFromJSON = function(j) {
var net = {};
for(var p in j) {
if(j.hasOwnProperty(p)){
net[p] = Mat(1,1); // not proud of this
Mat.code.fromJSON(net[p],j[p]);
}
}
return net;
}
var netZeroGrads = function(net) {
for(var p in net) {
if(net.hasOwnProperty(p)){
var mat = net[p];
gradFillConst(mat, 0);
}
}
}
var netFlattenGrads = function(net) {
var n = 0;
for(var p in net) {
if(net.hasOwnProperty(p)) {
var mat = net[p]; n += mat.dw.length;
}}
var g = Mat(n, 1);
var ix = 0;
for(var p in net) {
if(net.hasOwnProperty(p)){
var mat = net[p];
for(var i=0,m=mat.dw.length;i<m;i++) {
g.w[ix] = mat.dw[i];
ix++;
}
}
}
return g;
}
// return Mat but filled with random numbers from gaussian
var RandMat = function(n,d,mu,std) {
var m = Mat(n, d);
fillRandn(m,mu,std);
//fillRand(m,-std,std); // kind of :P
return m;
}
// Mat utils
// fill matrix with random gaussian numbers
var fillRandn = function(m, mu, std) { for(var i=0,n=m.w.length;i<n;i++) { m.w[i] = randn(mu, std); } }
var fillRand = function(m, lo, hi) { for(var i=0,n=m.w.length;i<n;i++) { m.w[i] = randf(lo, hi); } }
var gradFillConst = function(m, c) { for(var i=0,n=m.dw.length;i<n;i++) { m.dw[i] = c } }
// Transformer definitions
var Graph = function(needs_backprop) {
var G = {}
if(typeof needs_backprop === 'undefined') { needs_backprop = true; }
G.needs_backprop = needs_backprop;
// this will store a list of functions that perform backprop,
// in their forward pass order. So in backprop we will go
// backwards and evoke each one
G.backprop = [];
return G
}
Graph.code = {
backward: function(G) {
for(var i=G.backprop.length-1;i>=0;i--) {
G.backprop[i](); // tick!
}
},
rowPluck: function(G, m, ix) {
// pluck a row of m with index ix and return it as col vector
assert(ix >= 0 && ix < m.n);
var d = m.d;
var out = Mat(d, 1);
for(var i=0,n=d;i<n;i++){ out.w[i] = m.w[d * ix + i]; } // copy over the data
if(G.needs_backprop) {
var backward = function() {
for(var i=0,n=d;i<n;i++){ m.dw[d * ix + i] += out.dw[i]; }
}
G.backprop.push(backward);
}
return out;
},
tanh: function(G, m) {
// tanh nonlinearity
var out = Mat(m.n, m.d);
var n = m.w.length;
for(var i=0;i<n;i++) {
out.w[i] = Math.tanh(m.w[i]);
}
if(G.needs_backprop) {
var backward = function() {
for(var i=0;i<n;i++) {
// grad for z = tanh(x) is (1 - z^2)
var mwi = out.w[i];
m.dw[i] += (1.0 - mwi * mwi) * out.dw[i];
}
}
G.backprop.push(backward);
}
return out;
},
sigmoid: function(G, m) {
// sigmoid nonlinearity
var out = Mat(m.n, m.d);
var n = m.w.length;
for(var i=0;i<n;i++) {
out.w[i] = sig(m.w[i]);
}
if(G.needs_backprop) {
var backward = function() {
for(var i=0;i<n;i++) {
// grad for z = tanh(x) is (1 - z^2)
var mwi = out.w[i];
m.dw[i] += mwi * (1.0 - mwi) * out.dw[i];
}
}
G.backprop.push(backward);
}
return out;
},
relu: function(G, m) {
var out = Mat(m.n, m.d);
var n = m.w.length;
for(var i=0;i<n;i++) {
out.w[i] = Math.max(0, m.w[i]); // relu
}
if(G.needs_backprop) {
var backward = function() {
for(var i=0;i<n;i++) {
m.dw[i] += m.w[i] > 0 ? out.dw[i] : 0.0;
}
}
G.backprop.push(backward);
}
return out;
},
mul: function(G, m1, m2) {
// multiply matrices m1 * m2
assert(m1.d === m2.n, 'matmul dimensions misaligned');
var n = m1.n;
var d = m2.d;
var out = Mat(n,d);
for(var i=0;i<m1.n;i++) { // loop over rows of m1
for(var j=0;j<m2.d;j++) { // loop over cols of m2
var dot = 0.0;
for(var k=0;k<m1.d;k++) { // dot product loop
dot += m1.w[m1.d*i+k] * m2.w[m2.d*k+j];
}
out.w[d*i+j] = dot;
}
}
if(G.needs_backprop) {
var backward = function() {
for(var i=0;i<m1.n;i++) { // loop over rows of m1
for(var j=0;j<m2.d;j++) { // loop over cols of m2
for(var k=0;k<m1.d;k++) { // dot product loop
var b = out.dw[d*i+j];
m1.dw[m1.d*i+k] += m2.w[m2.d*k+j] * b;
m2.dw[m2.d*k+j] += m1.w[m1.d*i+k] * b;
}
}
}
}
G.backprop.push(backward);
}
return out;
},
add: function(G, m1, m2) {
assert(m1.w.length === m2.w.length);
var out = Mat(m1.n, m1.d);
for(var i=0,n=m1.w.length;i<n;i++) {
out.w[i] = m1.w[i] + m2.w[i];
}
if(G.needs_backprop) {
var backward = function() {
for(var i=0,n=m1.w.length;i<n;i++) {
m1.dw[i] += out.dw[i];
m2.dw[i] += out.dw[i];
}
}
G.backprop.push(backward);
}
return out;
},
dot: function(G, m1, m2) {
// m1 m2 are both column vectors
assert(m1.w.length === m2.w.length);
var out = Mat(1,1);
var dot = 0.0;
for(var i=0,n=m1.w.length;i<n;i++) {
dot += m1.w[i] * m2.w[i];
}
out.w[0] = dot;
if(G.needs_backprop) {
var backward = function() {
for(var i=0,n=m1.w.length;i<n;i++) {
m1.dw[i] += m2.w[i] * out.dw[0];
m2.dw[i] += m1.w[i] * out.dw[0];
}
}
G.backprop.push(backward);
}
return out;
},
eltmul: function(G, m1, m2) {
assert(m1.w.length === m2.w.length);
var out = Mat(m1.n, m1.d);
for(var i=0,n=m1.w.length;i<n;i++) {
out.w[i] = m1.w[i] * m2.w[i];
}
if(G.needs_backprop) {
var backward = function() {
for(var i=0,n=m1.w.length;i<n;i++) {
m1.dw[i] += m2.w[i] * out.dw[i];
m2.dw[i] += m1.w[i] * out.dw[i];
}
}
G.backprop.push(backward);
}
return out;
},
}
var softmax = function(m) {
var out = Mat(m.n, m.d); // probability volume
var maxval = -999999;
for(var i=0,n=m.w.length;i<n;i++) { if(m.w[i] > maxval) maxval = m.w[i]; }
var s = 0.0;
for(var i=0,n=m.w.length;i<n;i++) {
out.w[i] = Math.exp(m.w[i] - maxval);
s += out.w[i];
}
for(var i=0,n=m.w.length;i<n;i++) { out.w[i] /= s; }
// no backward pass here needed
// since we will use the computed probabilities outside
// to set gradients directly on m
return out;
}
var Solver = function() {
var S = {}
S.decay_rate = 0.999;
S.smooth_eps = 1e-8;
S.step_cache = {};
return S
}
Solver.code = {
step: function(S, model, step_size, regc, clipval) {
// perform parameter update
var solver_stats = {};
var num_clipped = 0;
var num_tot = 0;
for(var k in model) {
if(model.hasOwnProperty(k)) {
var m = model[k]; // mat ref
if(!(k in S.step_cache)) { S.step_cache[k] = Mat(m.n, m.d); }
var s = S.step_cache[k];
for(var i=0,n=m.w.length;i<n;i++) {
// rmsprop adaptive learning rate
var mdwi = m.dw[i];
s.w[i] = s.w[i] * S.decay_rate + (1.0 - S.decay_rate) * mdwi * mdwi;
// gradient clip
if(mdwi > clipval) {
mdwi = clipval;
num_clipped++;
}
if(mdwi < -clipval) {
mdwi = -clipval;
num_clipped++;
}
num_tot++;
// update (and regularize)
m.w[i] += - step_size * mdwi / Math.sqrt(s.w[i] + S.smooth_eps) - regc * m.w[i];
m.dw[i] = 0; // reset gradients for next iteration
}
}
}
solver_stats['ratio_clipped'] = num_clipped*1.0/num_tot;
return solver_stats;
}
}
var initLSTM = function(input_size, hidden_sizes, output_size) {
// hidden size should be a list
var model = {};
for(var d=0;d<hidden_sizes.length;d++) { // loop over depths
var prev_size = d === 0 ? input_size : hidden_sizes[d - 1];
var hidden_size = hidden_sizes[d];
// gates parameters
model['Wix'+d] = RandMat(hidden_size, prev_size , 0, 0.08);
model['Wih'+d] = RandMat(hidden_size, hidden_size , 0, 0.08);
model['bi'+d] = Mat(hidden_size, 1);
model['Wfx'+d] = RandMat(hidden_size, prev_size , 0, 0.08);
model['Wfh'+d] = RandMat(hidden_size, hidden_size , 0, 0.08);
model['bf'+d] = Mat(hidden_size, 1);
model['Wox'+d] = RandMat(hidden_size, prev_size , 0, 0.08);
model['Woh'+d] = RandMat(hidden_size, hidden_size , 0, 0.08);
model['bo'+d] = Mat(hidden_size, 1);
// cell write params
model['Wcx'+d] = RandMat(hidden_size, prev_size , 0, 0.08);
model['Wch'+d] = RandMat(hidden_size, hidden_size , 0, 0.08);
model['bc'+d] = Mat(hidden_size, 1);
}
// decoder params
model['Whd'] = RandMat(output_size, hidden_size, 0, 0.08);
model['bd'] = Mat(output_size, 1);
return model;
}
var forwardLSTM = function(G, model, hidden_sizes, x, prev) {
// forward prop for a single tick of LSTM
// G is graph to append ops to
// model contains LSTM parameters
// x is 1D column vector with observation
// prev is a struct containing hidden and cell
// from previous iteration
if(prev == null || typeof prev.h === 'undefined') {
var hidden_prevs = [];
var cell_prevs = [];
for(var d=0;d<hidden_sizes.length;d++) {
hidden_prevs.push(R.Mat(hidden_sizes[d],1));
cell_prevs.push(R.Mat(hidden_sizes[d],1));
}
} else {
var hidden_prevs = prev.h;
var cell_prevs = prev.c;
}
var hidden = [];
var cell = [];
for(var d=0;d<hidden_sizes.length;d++) {
var input_vector = d === 0 ? x : hidden[d-1];
var hidden_prev = hidden_prevs[d];
var cell_prev = cell_prevs[d];
// input gate
var h0 = Graph.code.mul(G,model['Wix'+d], input_vector);
var h1 = Graph.code.mul(G,model['Wih'+d], hidden_prev);
var input_gate = Graph.code.sigmoid(G,Graph.code.add(G,Graph.code.add(G,h0,h1),
model['bi'+d]));
// forget gate
var h2 = Graph.code.mul(G,model['Wfx'+d], input_vector);
var h3 = Graph.code.mul(G,model['Wfh'+d], hidden_prev);
var forget_gate = Graph.code.sigmoid(
G,Graph.code.add(G,Graph.code.add(G,h2, h3),
model['bf'+d]));
// output gate
var h4 = Graph.code.mul(G,model['Wox'+d], input_vector);
var h5 = Graph.code.mul(G,model['Woh'+d], hidden_prev);
var output_gate = Graph.code.sigmoid(G,Graph.code.add(G,Graph.code.add(G,h4, h5),
model['bo'+d]));
// write operation on cells
var h6 = Graph.code.mul(G,model['Wcx'+d], input_vector);
var h7 = Graph.code.mul(G,model['Wch'+d], hidden_prev);
var cell_write = Graph.code.tanh(G,Graph.code.add(
G,Graph.code.add(G,h6, h7),
model['bc'+d]));
// compute new cell activation
var retain_cell = Graph.code.eltmul(G,forget_gate, cell_prev); // what do we keep from cell
var write_cell = Graph.code.eltmul(G,input_gate, cell_write); // what do we write to cell
var cell_d = Graph.code.add(G,retain_cell, write_cell); // new cell contents
// compute hidden state as gated, saturated cell activations
var hidden_d = Graph.code.eltmul(G, output_gate, Graph.code.tanh(G,cell_d));
hidden.push(hidden_d);
cell.push(cell_d);
}
// one decoder to outputs at end
var output = Graph.code.add(G,Graph.code.mul(G,model['Whd'], hidden[hidden.length - 1]),model['bd']);
// return cell memory, hidden representation and output
return {'h':hidden, 'c':cell, 'o' : output};
}
var sig = function(x) {
// helper function for computing sigmoid
return 1.0/(1+Math.exp(-x));
}
var maxi = function(w) {
// argmax of array w
var maxv = w[0];
var maxix = 0;
for(var i=1,n=w.length;i<n;i++) {
var v = w[i];
if(v > maxv) {
maxix = i;
maxv = v;
}
}
return maxix;
}
var samplei = function(w) {
// sample argmax from w, assuming w are
// probabilities that sum to one
var r = randf(0,1);
var x = 0.0;
var i = 0;
while(true) {
x += w[i];
if(x > r) { return i; }
i++;
}
return w.length - 1; // pretty sure we should never get here?
}
// various utils
module.exports.assert = assert;
module.exports.zeros = zeros;
module.exports.maxi = maxi;
module.exports.samplei = samplei;
module.exports.randi = randi;
module.exports.randn = randn;
module.exports.softmax = softmax;
// classes
module.exports.Mat = Mat;
module.exports.RandMat = RandMat;
module.exports.forwardLSTM = forwardLSTM;
module.exports.initLSTM = initLSTM;
// more utils
module.exports.updateMat = updateMat;
module.exports.updateNet = updateNet;
module.exports.copyMat = copyMat;
module.exports.copyNet = copyNet;
module.exports.netToJSON = netToJSON;
module.exports.netFromJSON = netFromJSON;
module.exports.netZeroGrads = netZeroGrads;
module.exports.netFlattenGrads = netFlattenGrads;
// optimization
module.exports.Solver = Solver;
module.exports.Graph = Graph;
// END OF RECURRENTJS
var RL = module.exports;
// syntactic sugar function for getting default parameter values
var getopt = function(opt, field_name, default_value) {
if(typeof opt === 'undefined') { return default_value; }
return (typeof opt[field_name] !== 'undefined') ? opt[field_name] : default_value;
}
var zeros = R.zeros; // inherit these
var assert = R.assert;
var randi = R.randi;
var randf = R.randf;
var setConst = function(arr, c) {
for(var i=0,n=arr.length;i<n;i++) {
arr[i] = c;
}
}
var sampleWeighted = function(p) {
var r = Math.random();
var c = 0.0;
for(var i=0,n=p.length;i<n;i++) {
c += p[i];
if(c >= r) { return i; }
}
// assert(false, 'sampleWeighted: Invalid samples '+Io.inspect(p));
return 0
}
// ------
// AGENTS
// ------
// DPAgent performs Value Iteration
// - can also be used for Policy Iteration if you really wanted to
// - requires model of the environment :(
// - does not learn from experience :(
// - assumes finite MDP :(
var DPAgent = function(env, opt) {
var L={};
L.V = null; // state value function
L.P = null; // policy distribution \pi(s,a)
L.env = env; // store pointer to environment
L.gamma = getopt(opt, 'gamma', 0.75); // future reward discount factor
DPAgent.code.reset(L);
return L;
}
DPAgent.code = {
reset: function(L) {
// reset the agent's policy and value function
L.ns = L.env.getNumStates();
L.na = L.env.getMaxNumActions();
L.V = zeros(L.ns);
L.P = zeros(L.ns * L.na);
// initialize uniform random policy
for(var s=0;s<L.ns;s++) {
var poss = L.env.allowedActions(s);
for(var i=0,n=poss.length;i<n;i++) {
L.P[poss[i]*L.ns+s] = 1.0 / poss.length;
}
}
},
act: function(L,s) {
// behave according to the learned policy
var poss = L.env.allowedActions(s);
var ps = [];
for(var i=0,n=poss.length;i<n;i++) {
var a = poss[i];
var prob = L.P[a*L.ns+s];
ps.push(prob);
}
var maxi = sampleWeighted(ps);
return poss[maxi];
},
learn: function(L) {
// perform a single round of value iteration
DPAgent.code.evaluatePolicy(L); // writes this.V
DPAgent.code.updatePolicy(L); // writes this.P
},
evaluatePolicy: function(L) {
// perform a synchronous update of the value function
var Vnew = zeros(L.ns);
for(var s=0;s<L.ns;s++) {
// integrate over actions in a stochastic policy
// note that we assume that policy probability mass over allowed actions sums to one
var v = 0.0;
var poss = L.env.allowedActions(s);
for(var i=0,n=poss.length;i<n;i++) {
var a = poss[i];
var prob = L.P[a*L.ns+s]; // probability of taking action under policy
if(prob === 0) { continue; } // no contribution, skip for speed
var ns = L.env.nextState(s,a);
var rs = L.env.reward(s,a,ns); // reward for s->a->ns transition
v += prob * (rs + L.gamma * L.V[ns]);
}
Vnew[s] = v;
}
L.V = Vnew; // swap
},
updatePolicy: function(L) {
// update policy to be greedy w.r.t. learned Value function
for(var s=0;s<L.ns;s++) {
var poss = L.env.allowedActions(s);
// compute value of taking each allowed action
var vmax, nmax;
var vs = [];
for(var i=0,n=poss.length;i<n;i++) {
var a = poss[i];
var ns = L.env.nextState(s,a);
var rs = L.env.reward(s,a,ns);
var v = rs + L.gamma * L.V[ns];
vs.push(v);
if(i === 0 || v > vmax) { vmax = v; nmax = 1; }
else if(v === vmax) { nmax += 1; }
}
// update policy smoothly across all argmaxy actions
for(var i=0,n=poss.length;i<n;i++) {
var a = poss[i];
L.P[a*L.ns+s] = (vs[i] === vmax) ? 1.0/nmax : 0.0;
}
}
},
}
// QAgent uses TD (Q-Learning, SARSA)
// - does not require environment model :)
// - learns from experience :)
var TDAgent = function(env, opt) {
var L={}
L.update = getopt(opt, 'update', 'qlearn'); // qlearn | sarsa
L.gamma = getopt(opt, 'gamma', 0.75); // future reward discount factor
L.epsilon = getopt(opt, 'epsilon', 0.1); // for epsilon-greedy policy
L.alpha = getopt(opt, 'alpha', 0.01); // value function learning rate
// class allows non-deterministic policy, and smoothly regressing towards the optimal policy based on Q
L.smooth_policy_update = getopt(opt, 'smooth_policy_update', false);
L.beta = getopt(opt, 'beta', 0.01); // learning rate for policy, if smooth updates are on
// eligibility traces
L.lambda = getopt(opt, 'lambda', 0); // eligibility trace decay. 0 = no eligibility traces used
L.replacing_traces = getopt(opt, 'replacing_traces', true);
// optional optimistic initial values
L.q_init_val = getopt(opt, 'q_init_val', 0);
L.planN = getopt(opt, 'planN', 0); // number of planning steps per learning iteration (0 = no planning)
L.Q = null; // state action value function
L.P = null; // policy distribution \pi(s,a)
L.e = null; // eligibility trace
L.env_model_s = null;; // environment model (s,a) -> (s',r)
L.env_model_r = null;; // environment model (s,a) -> (s',r)
L.env = env; // store pointer to environment
TDAgent.code.reset(L);
return L;
}
TDAgent.code = {
reset: function(L){
// reset the agent's policy and value function
L.ns = L.env.getNumStates();
L.na = L.env.getMaxNumActions();
L.Q = zeros(L.ns * L.na);
if(L.q_init_val !== 0) { setConst(L.Q, L.q_init_val); }
L.P = zeros(L.ns * L.na);
L.e = zeros(L.ns * L.na);
// model/planning vars
L.env_model_s = zeros(L.ns * L.na);
setConst(L.env_model_s, -1); // init to -1 so we can test if we saw the state before
L.env_model_r = zeros(L.ns * L.na);
L.sa_seen = [];
L.pq = zeros(L.ns * L.na);
// initialize uniform random policy
for(var s=0;s<L.ns;s++) {
var poss = L.env.allowedActions(s);
for(var i=0,n=poss.length;i<n;i++) {
L.P[poss[i]*L.ns+s] = 1.0 / poss.length;
}
}
// agent memory, needed for streaming updates
// (s0,a0,r0,s1,a1,r1,...)
L.r0 = null;
L.s0 = null;
L.s1 = null;
L.a0 = null;
L.a1 = null;
},
resetEpisode: function(L) {
// an episode finished
},
act: function(L,s){
// act according to epsilon greedy policy
var poss = L.env.allowedActions(s);
var probs = [];
for(var i=0,n=poss.length;i<n;i++) {
probs.push(L.P[poss[i]*L.ns+s]);
}
// epsilon greedy policy
if(Math.random() < L.epsilon) {
var a = poss[randi(0,poss.length)]; // random available action
L.explored = true;
} else {
var a = poss[sampleWeighted(probs)];
L.explored = false;
}
// shift state memory
L.s0 = L.s1;
L.a0 = L.a1;
L.s1 = s;
L.a1 = a;
return a;
},
learn: function(L,r1){
// takes reward for previous action, which came from a call to act()
if(!(L.r0 == null)) {
TDAgent.code.learnFromTuple(L, L.s0, L.a0, L.r0, L.s1, L.a1, L.lambda);
if(L.planN > 0) {
TDAgent.code.updateModel(L, L.s0, L.a0, L.r0, L.s1);
TDAgent.code.plan(L);
}
}
L.r0 = r1; // store this for next update
},
updateModel: function(L, s0, a0, r0, s1) {
// transition (s0,a0) -> (r0,s1) was observed. Update environment model
var sa = a0 * L.ns + s0;
if(L.env_model_s[sa] === -1) {
// first time we see this state action
L.sa_seen.push(a0 * L.ns + s0); // add as seen state
}
L.env_model_s[sa] = s1;
L.env_model_r[sa] = r0;
},
plan: function(L) {
// order the states based on current priority queue information
var spq = [];
for(var i=0,n=L.sa_seen.length;i<n;i++) {
var sa = L.sa_seen[i];
var sap = L.pq[sa];
if(sap > 1e-5) { // gain a bit of efficiency
spq.push({sa:sa, p:sap});
}
}
spq.sort(function(a,b){ return a.p < b.p ? 1 : -1});
// perform the updates
var nsteps = Math.min(L.planN, spq.length);
for(var k=0;k<nsteps;k++) {
// random exploration
//var i = randi(0, this.sa_seen.length); // pick random prev seen state action
//var s0a0 = this.sa_seen[i];
var s0a0 = spq[k].sa;
L.pq[s0a0] = 0; // erase priority, since we're backing up this state
var s0 = s0a0 % L.ns;
var a0 = Math.floor(s0a0 / L.ns);
var r0 = L.env_model_r[s0a0];
var s1 = L.env_model_s[s0a0];
var a1 = -1; // not used for Q learning
if(L.update === 'sarsa') {
// generate random action?...
var poss = L.env.allowedActions(s1);
var a1 = poss[randi(0,poss.length)];
}
TDAgent.code.learnFromTuple(L, s0, a0, r0, s1, a1, 0); // note lambda = 0 - shouldnt use eligibility trace here
}
},
learnFromTuple: function(L, s0, a0, r0, s1, a1, lambda) {
var sa = a0 * L.ns + s0;
// calculate the target for Q(s,a)
if(L.update === 'qlearn') {
// Q learning target is Q(s0,a0) = r0 + gamma * max_a Q[s1,a]
var poss = L.env.allowedActions(s1);
var qmax = 0;
for(var i=0,n=poss.length;i<n;i++) {
var s1a = poss[i] * L.ns + s1;
var qval = L.Q[s1a];
if(i === 0 || qval > qmax) { qmax = qval; }
}
var target = r0 + L.gamma * qmax;
} else if(L.update === 'sarsa') {
// SARSA target is Q(s0,a0) = r0 + gamma * Q[s1,a1]
var s1a1 = a1 * L.ns + s1;
var target = r0 + L.gamma * L.Q[s1a1];
}
if(lambda > 0) {
// perform an eligibility trace update
if(L.replacing_traces) {
L.e[sa] = 1;
} else {
L.e[sa] += 1;
}
var edecay = lambda * L.gamma;
var state_update = zeros(L.ns);
for(var s=0;s<L.ns;s++) {
var poss = L.env.allowedActions(s);
for(var i=0;i<poss.length;i++) {
var a = poss[i];
var saloop = a * L.ns + s;
var esa = L.e[saloop];
var update = L.alpha * esa * (target - L.Q[saloop]);
L.Q[saloop] += update;
L.updatePriority(s, a, update);
L.e[saloop] *= edecay;
var u = Math.abs(update);
if(u > state_update[s]) { state_update[s] = u; }
}
}
for(var s=0;s<L.ns;s++) {
if(state_update[s] > 1e-5) { // save efficiency here
TDAgent.code.updatePolicy(L,s);
}
}
if(L.explored && L.update === 'qlearn') {
// have to wipe the trace since q learning is off-policy :(
L.e = zeros(L.ns * L.na);
}
} else {
// simpler and faster update without eligibility trace
// update Q[sa] towards it with some step size
var update = L.alpha * (target - L.Q[sa]);
L.Q[sa] += update;
TDAgent.code.updatePriority(L,s0, a0, update);
// update the policy to reflect the change (if appropriate)
TDAgent.code.updatePolicy(L,s0);
}
},
updatePriority: function(L,s,a,u) {
// used in planning. Invoked when Q[sa] += update
// we should find all states that lead to (s,a) and upgrade their priority
// of being update in the next planning step
u = Math.abs(u);
if(u < 1e-5) { return; } // for efficiency skip small updates
if(L.planN === 0) { return; } // there is no planning to be done, skip.
for(var si=0;si<L.ns;si++) {
// note we are also iterating over impossible actions at all states,
// but this should be okay because their env_model_s should simply be -1
// as initialized, so they will never be predicted to point to any state
// because they will never be observed, and hence never be added to the model
for(var ai=0;ai<L.na;ai++) {
var siai = ai * L.ns + si;
if(L.env_model_s[siai] === s) {
// this state leads to s, add it to priority queue
L.pq[siai] += u;
}
}
}
},
updatePolicy: function(L,s) {
var poss = L.env.allowedActions(s);
// set policy at s to be the action that achieves max_a Q(s,a)
// first find the maxy Q values
var qmax, nmax;
var qs = [];
for(var i=0,n=poss.length;i<n;i++) {
var a = poss[i];
var qval = L.Q[a*L.ns+s];
qs.push(qval);
if(i === 0 || qval > qmax) { qmax = qval; nmax = 1; }
else if(qval === qmax) { nmax += 1; }
}
// now update the policy smoothly towards the argmaxy actions
var psum = 0.0;
for(var i=0,n=poss.length;i<n;i++) {
var a = poss[i];
var target = (qs[i] === qmax) ? 1.0/nmax : 0.0;
var ix = a*L.ns+s;
if(L.smooth_policy_update) {
// slightly hacky :p
L.P[ix] += L.beta * (target - L.P[ix]);
psum += L.P[ix];
} else {
// set hard target
L.P[ix] = target;
}
}
if(L.smooth_policy_update) {
// renomalize P if we're using smooth policy updates
for(var i=0,n=poss.length;i<n;i++) {
var a = poss[i];
L.P[a*L.ns+s] /= psum;
}
}
}
}
var DQNAgent = function(env, opt) {
var L = {}
L.gamma = getopt(opt, 'gamma', 0.75); // future reward discount factor
L.epsilon = getopt(opt, 'epsilon', 0.1); // for epsilon-greedy policy
L.alpha = getopt(opt, 'alpha', 0.01); // value function learning rate
L.experience_add_every = getopt(opt, 'experience_add_every', 25); // number of time steps before we add another experience to replay memory
L.experience_size = getopt(opt, 'experience_size', 5000); // size of experience replay
L.learning_steps_per_iteration = getopt(opt, 'learning_steps_per_iteration', 10);
L.tderror_clamp = getopt(opt, 'tderror_clamp', 1.0);
L.num_hidden_units = getopt(opt, 'num_hidden_units', 100);
L.env = env;
DQNAgent.code.reset(L);
return L
}
DQNAgent.code = {
reset: function(L) {
L.nh = L.num_hidden_units; // number of hidden units
L.ns = L.env.getNumStates();
L.na = L.env.getMaxNumActions();
// nets are hardcoded for now as key (str) -> Mat
// not proud of this. better solution is to have a whole Net object
// on top of Mats, but for now sticking with this
L.net = {};
L.net.W1 = R.RandMat(L.nh, L.ns, 0, 0.01);
L.net.b1 = R.Mat(L.nh, 1, 0, 0.01);
L.net.W2 = R.RandMat(L.na, L.nh, 0, 0.01);
L.net.b2 = R.Mat(L.na, 1, 0, 0.01);
L.exp = []; // experience
L.expi = 0; // where to insert
L.t = 0;
L.r0 = null;
L.s0 = null;
L.s1 = null;
L.a0 = null;
L.a1 = null;
L.tderror = 0; // for visualization only...
},
toJSON: function(L) {
// save function
var j = {};
j.nh = L.nh;
j.ns = L.ns;
j.na = L.na;
j.net = R.netToJSON(L.net);
return j;
},
fromJSON: function(L,j) {
// load function
L.nh = j.nh;
L.ns = j.ns;
L.na = j.na;
L.net = R.netFromJSON(j.net);
},
forwardQ: function(L, net, s, needs_backprop) {
var G = R.Graph(needs_backprop);
var a1mat = Graph.code.add(G,Graph.code.mul(G,net.W1, s), net.b1);
var h1mat = Graph.code.tanh(G,a1mat);
var a2mat = Graph.code.add(G,Graph.code.mul(G,net.W2, h1mat), net.b2);
L.lastG = G; // back this up. Kind of hacky isn't it
return a2mat;
},
act: function(L,slist) {
// convert to a Mat column vector
var s = R.Mat(L.ns, 1);
Mat.code.setFrom(s,slist);
// epsilon greedy policy
if(Math.random() < L.epsilon) {
var a = randi(0, L.na);
} else {
// greedy wrt Q function
var amat = DQNAgent.code.forwardQ(L,L.net, s, false);
var a = R.maxi(amat.w); // returns index of argmax action
}
// shift state memory
L.s0 = L.s1;
L.a0 = L.a1;
L.s1 = s;
L.a1 = a;
return a;
},
learn: function(L,r1) {
// perform an update on Q function
if(!(L.r0 == null) && L.alpha > 0) {
// learn from this tuple to get a sense of how "surprising" it is to the agent
var tderror = DQNAgent.code.learnFromTuple(L, L.s0, L.a0, L.r0, L.s1, L.a1);
L.tderror = tderror; // a measure of surprise
// decide if we should keep this experience in the replay
if(L.t % L.experience_add_every === 0) {
L.exp[L.expi] = [L.s0, L.a0, L.r0, L.s1, L.a1];
L.expi += 1;
if(L.expi > L.experience_size) { L.expi = 0; } // roll over when we run out
}
L.t += 1;
// sample some additional experience from replay memory and learn from it
for(var k=0;k<L.learning_steps_per_iteration;k++) {
var ri = randi(0, L.exp.length); // todo: priority sweeps?
var e = L.exp[ri];
DQNAgent.code.learnFromTuple(L, e[0], e[1], e[2], e[3], e[4])
}
}
L.r0 = r1; // store for next update
},
learnFromTuple: function(L, s0, a0, r0, s1, a1) {
// want: Q(s,a) = r + gamma * max_a' Q(s',a')
// compute the target Q value
var tmat = DQNAgent.code.forwardQ(L, L.net, s1, false);
var qmax = r0 + L.gamma * tmat.w[R.maxi(tmat.w)];
// now predict
var pred = DQNAgent.code.forwardQ(L, L.net, s0, true);
var tderror = pred.w[a0] - qmax;
var clamp = L.tderror_clamp;
if(Math.abs(tderror) > clamp) { // huber loss to robustify
if(tderror > clamp) tderror = clamp;
if(tderror < -clamp) tderror = -clamp;
}
pred.dw[a0] = tderror;
Graph.code.backward( L.lastG); // compute gradients on net params
// update net
R.updateNet(L.net, L.alpha);
return tderror;
}
}
// exports
module.exports.DPAgent = DPAgent;
module.exports.TDAgent = TDAgent;
module.exports.DQNAgent = DQNAgent;
//module.exports.SimpleReinforceAgent = SimpleReinforceAgent;
//module.exports.RecurrentReinforceAgent = RecurrentReinforceAgent;
//module.exports.DeterministPG = DeterministPG;