297 lines
6.6 KiB
JavaScript
297 lines
6.6 KiB
JavaScript
/**
|
|
** ==============================
|
|
** O O O OOOO
|
|
** O O O O O O
|
|
** O O O O O O
|
|
** OOOO OOOO O OOO OOOO
|
|
** O O O O O O O
|
|
** O O O O O O O
|
|
** OOOO OOOO O O OOOO
|
|
** ==============================
|
|
** Dr. Stefan Bosse http://www.bsslab.de
|
|
**
|
|
** COPYRIGHT: THIS SOFTWARE, EXECUTABLE AND SOURCE CODE IS OWNED
|
|
** BY THE AUTHOR(S).
|
|
** THIS SOURCE CODE MAY NOT BE COPIED, EXTRACTED,
|
|
** MODIFIED, OR OTHERWISE USED IN A CONTEXT
|
|
** OUTSIDE OF THE SOFTWARE SYSTEM.
|
|
**
|
|
** $AUTHORS: Ankit Kuwadekar, Stefan Bosse
|
|
** $INITIAL: (C) 2014, Ankit Kuwadekar
|
|
** $MODIFIED: (C) 2006-2018 bLAB by sbosse
|
|
** $VERSION: 1.2.1
|
|
**
|
|
** $INFO:
|
|
**
|
|
** ID3 Decision Tree Algorithm supporting categorical values only
|
|
** Portable model
|
|
**
|
|
** $ENDOFINFO
|
|
*/
|
|
var Io = Require('com/io');
|
|
var Comp = Require('com/compat');
|
|
var current=none;
|
|
var Aios=none;
|
|
|
|
|
|
/**
|
|
* Map of valid tree node types
|
|
* @constant
|
|
* @static
|
|
*/
|
|
var NODE_TYPES = {
|
|
RESULT: 'result',
|
|
FEATURE: 'feature',
|
|
FEATURE_VALUE: 'feature_value'
|
|
};
|
|
|
|
function isEqual(a,b) { return a==b }
|
|
|
|
/**
|
|
* Predicts class for sample
|
|
*/
|
|
function predict(model,sample) {
|
|
var root = model;
|
|
while (root.type !== NODE_TYPES.RESULT) {
|
|
var attr = root.name;
|
|
var sampleVal = sample[attr];
|
|
var childNode = Comp.array.find(root.vals, function(node) {
|
|
return node.name == sampleVal
|
|
});
|
|
if (childNode){
|
|
root = childNode.child;
|
|
} else {
|
|
root = root.vals[0].child;
|
|
}
|
|
}
|
|
return root.val;
|
|
};
|
|
|
|
/**
|
|
* Evalutes prediction accuracy on samples
|
|
*/
|
|
function evaluate(model,target,samples) {
|
|
|
|
var total = 0;
|
|
var correct = 0;
|
|
|
|
Comp.array.iter(samples, function(s) {
|
|
total++;
|
|
var pred = predict(model,s);
|
|
var actual = s[target];
|
|
if (isEqual(pred,actual)) {
|
|
correct++;
|
|
}
|
|
});
|
|
|
|
return correct / total;
|
|
};
|
|
|
|
/**
|
|
* Creates a new tree
|
|
*/
|
|
function createTree(data, target, features) {
|
|
var targets = Comp.array.unique(Comp.array.pluck(data, target));
|
|
|
|
if (targets.length == 1) {
|
|
return {
|
|
type: NODE_TYPES.RESULT,
|
|
val: targets[0],
|
|
name: targets[0],
|
|
alias: targets[0] + randomUUID()
|
|
};
|
|
}
|
|
|
|
if (features.length == 0) {
|
|
var topTarget = mostCommon(targets);
|
|
return {
|
|
type: NODE_TYPES.RESULT,
|
|
val: topTarget,
|
|
name: topTarget,
|
|
alias: topTarget + randomUUID()
|
|
};
|
|
}
|
|
|
|
var bestFeature = maxGain(data, target, features);
|
|
var remainingFeatures = Comp.array.without(features, bestFeature);
|
|
var possibleValues = Comp.array.unique(Comp.array.pluck(data, bestFeature));
|
|
|
|
var node = {
|
|
name: bestFeature,
|
|
alias: bestFeature + randomUUID()
|
|
};
|
|
|
|
node.type = NODE_TYPES.FEATURE;
|
|
node.vals = Comp.array.map(possibleValues, function(v) {
|
|
var _newS = data.filter(function(x) {
|
|
return x[bestFeature] == v
|
|
});
|
|
|
|
var child_node = {
|
|
name: v,
|
|
alias: v + randomUUID(),
|
|
type: NODE_TYPES.FEATURE_VALUE
|
|
};
|
|
|
|
child_node.child = createTree(_newS, target, remainingFeatures);
|
|
return child_node;
|
|
});
|
|
|
|
return node;
|
|
}
|
|
|
|
/**
|
|
* Computes Max gain across features to determine best split
|
|
* @private
|
|
*/
|
|
function maxGain(data, target, features) {
|
|
var gains=[];
|
|
var maxgain= Comp.array.max(features, function(element) {
|
|
var g = gain(data, target, element);
|
|
gains.push(element+':'+g);
|
|
return g;
|
|
});
|
|
return maxgain;
|
|
}
|
|
|
|
/**
|
|
* Computes entropy of a list
|
|
* @private
|
|
*/
|
|
function entropy(vals) {
|
|
var uniqueVals = Comp.array.unique(vals);
|
|
var probs = uniqueVals.map(function(x) {
|
|
return prob(x, vals)
|
|
});
|
|
|
|
var logVals = probs.map(function(p) {
|
|
return -p * log2(p)
|
|
});
|
|
|
|
return logVals.reduce(function(a, b) {
|
|
return a + b
|
|
}, 0);
|
|
}
|
|
|
|
/**
|
|
* Computes gain
|
|
* @private
|
|
*/
|
|
function gain(data, target, feature) {
|
|
var attrVals = Comp.array.unique(Comp.array.pluck(data, feature));
|
|
var setEntropy = entropy(Comp.array.pluck(data, target));
|
|
var setSize = data.length;
|
|
|
|
var entropies = attrVals.map(function(n) {
|
|
var subset = data.filter(function(x) {
|
|
return x[feature] === n
|
|
});
|
|
|
|
return (subset.length / setSize) * entropy(Comp.array.pluck(subset, target));
|
|
});
|
|
|
|
// var entropyData = entropyV(Comp.array.pluck(data, feature),eps);
|
|
// console.log('Feat '+feature+':'+entropyData);
|
|
var sumOfEntropies = entropies.reduce(function(a, b) {
|
|
return a + b
|
|
}, 0);
|
|
return setEntropy - sumOfEntropies;
|
|
}
|
|
|
|
/**
|
|
* Computes probability of of a given value existing in a given list
|
|
* @private
|
|
*/
|
|
function prob(value, list) {
|
|
var occurrences = Comp.array.filter(list, function(element) {
|
|
return element === value
|
|
});
|
|
|
|
var numOccurrences = occurrences.length;
|
|
var numElements = list.length;
|
|
return numOccurrences / numElements;
|
|
}
|
|
|
|
/**
|
|
* Computes Log with base-2
|
|
* @private
|
|
*/
|
|
function log2(n) {
|
|
return Math.log(n) / Math.log(2);
|
|
}
|
|
|
|
/**
|
|
* Finds element with highest occurrence in a list
|
|
* @private
|
|
*/
|
|
function mostCommon(list) {
|
|
var elementFrequencyMap = {};
|
|
var largestFrequency = -1;
|
|
var mostCommonElement = null;
|
|
|
|
list.forEach(function(element) {
|
|
var elementFrequency = (elementFrequencyMap[element] || 0) + 1;
|
|
elementFrequencyMap[element] = elementFrequency;
|
|
|
|
if (largestFrequency < elementFrequency) {
|
|
mostCommonElement = element;
|
|
largestFrequency = elementFrequency;
|
|
}
|
|
});
|
|
|
|
return mostCommonElement;
|
|
}
|
|
|
|
/**
|
|
* Generates random UUID
|
|
* @private
|
|
*/
|
|
function randomUUID() {
|
|
return "_r" + Math.random().toString(32).slice(2);
|
|
}
|
|
|
|
function depth(model) {
|
|
switch (model.type) {
|
|
case NODE_TYPES.RESULT: return 1;
|
|
case NODE_TYPES.FEATURE:
|
|
return 1+Comp.array.max(model.vals,function (val) {
|
|
return depth(val);
|
|
});
|
|
case NODE_TYPES.FEATURE_VALUE:
|
|
return 1+depth(model.child);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
function print(model) {
|
|
var line='',sep;
|
|
switch (model.type) {
|
|
case NODE_TYPES.RESULT:
|
|
return ' -> '+model.name;
|
|
case NODE_TYPES.FEATURE:
|
|
line='('+model.name+'?';
|
|
sep='';
|
|
Comp.array.iter(model.vals,function (v) {
|
|
line += sep+print(v);
|
|
sep=',';
|
|
});
|
|
return line+')';
|
|
case NODE_TYPES.FEATURE_VALUE:
|
|
return ' '+model.name+':'+print(model.child);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
module.exports = {
|
|
NODE_TYPES:NODE_TYPES,
|
|
createTree:createTree,
|
|
depth:depth,
|
|
entropy:entropy,
|
|
evaluate:evaluate,
|
|
predict:predict,
|
|
print:print,
|
|
current:function (module) { current=module.current; Aios=module;}
|
|
};
|
|
|