jam/js/ml/id3.js.bak

297 lines
6.6 KiB
JavaScript

/**
** ==============================
** O O O OOOO
** O O O O O O
** O O O O O O
** OOOO OOOO O OOO OOOO
** O O O O O O O
** O O O O O O O
** OOOO OOOO O O OOOO
** ==============================
** Dr. Stefan Bosse http://www.bsslab.de
**
** COPYRIGHT: THIS SOFTWARE, EXECUTABLE AND SOURCE CODE IS OWNED
** BY THE AUTHOR(S).
** THIS SOURCE CODE MAY NOT BE COPIED, EXTRACTED,
** MODIFIED, OR OTHERWISE USED IN A CONTEXT
** OUTSIDE OF THE SOFTWARE SYSTEM.
**
** $AUTHORS: Ankit Kuwadekar, Stefan Bosse
** $INITIAL: (C) 2014, Ankit Kuwadekar
** $MODIFIED: (C) 2006-2018 bLAB by sbosse
** $VERSION: 1.2.1
**
** $INFO:
**
** ID3 Decision Tree Algorithm supporting categorical values only
** Portable model
**
** $ENDOFINFO
*/
var Io = Require('com/io');
var Comp = Require('com/compat');
var current=none;
var Aios=none;
/**
* Map of valid tree node types
* @constant
* @static
*/
var NODE_TYPES = {
RESULT: 'result',
FEATURE: 'feature',
FEATURE_VALUE: 'feature_value'
};
function isEqual(a,b) { return a==b }
/**
* Predicts class for sample
*/
function predict(model,sample) {
var root = model;
while (root.type !== NODE_TYPES.RESULT) {
var attr = root.name;
var sampleVal = sample[attr];
var childNode = Comp.array.find(root.vals, function(node) {
return node.name == sampleVal
});
if (childNode){
root = childNode.child;
} else {
root = root.vals[0].child;
}
}
return root.val;
};
/**
* Evalutes prediction accuracy on samples
*/
function evaluate(model,target,samples) {
var total = 0;
var correct = 0;
Comp.array.iter(samples, function(s) {
total++;
var pred = predict(model,s);
var actual = s[target];
if (isEqual(pred,actual)) {
correct++;
}
});
return correct / total;
};
/**
* Creates a new tree
*/
function createTree(data, target, features) {
var targets = Comp.array.unique(Comp.array.pluck(data, target));
if (targets.length == 1) {
return {
type: NODE_TYPES.RESULT,
val: targets[0],
name: targets[0],
alias: targets[0] + randomUUID()
};
}
if (features.length == 0) {
var topTarget = mostCommon(targets);
return {
type: NODE_TYPES.RESULT,
val: topTarget,
name: topTarget,
alias: topTarget + randomUUID()
};
}
var bestFeature = maxGain(data, target, features);
var remainingFeatures = Comp.array.without(features, bestFeature);
var possibleValues = Comp.array.unique(Comp.array.pluck(data, bestFeature));
var node = {
name: bestFeature,
alias: bestFeature + randomUUID()
};
node.type = NODE_TYPES.FEATURE;
node.vals = Comp.array.map(possibleValues, function(v) {
var _newS = data.filter(function(x) {
return x[bestFeature] == v
});
var child_node = {
name: v,
alias: v + randomUUID(),
type: NODE_TYPES.FEATURE_VALUE
};
child_node.child = createTree(_newS, target, remainingFeatures);
return child_node;
});
return node;
}
/**
* Computes Max gain across features to determine best split
* @private
*/
function maxGain(data, target, features) {
var gains=[];
var maxgain= Comp.array.max(features, function(element) {
var g = gain(data, target, element);
gains.push(element+':'+g);
return g;
});
return maxgain;
}
/**
* Computes entropy of a list
* @private
*/
function entropy(vals) {
var uniqueVals = Comp.array.unique(vals);
var probs = uniqueVals.map(function(x) {
return prob(x, vals)
});
var logVals = probs.map(function(p) {
return -p * log2(p)
});
return logVals.reduce(function(a, b) {
return a + b
}, 0);
}
/**
* Computes gain
* @private
*/
function gain(data, target, feature) {
var attrVals = Comp.array.unique(Comp.array.pluck(data, feature));
var setEntropy = entropy(Comp.array.pluck(data, target));
var setSize = data.length;
var entropies = attrVals.map(function(n) {
var subset = data.filter(function(x) {
return x[feature] === n
});
return (subset.length / setSize) * entropy(Comp.array.pluck(subset, target));
});
// var entropyData = entropyV(Comp.array.pluck(data, feature),eps);
// console.log('Feat '+feature+':'+entropyData);
var sumOfEntropies = entropies.reduce(function(a, b) {
return a + b
}, 0);
return setEntropy - sumOfEntropies;
}
/**
* Computes probability of of a given value existing in a given list
* @private
*/
function prob(value, list) {
var occurrences = Comp.array.filter(list, function(element) {
return element === value
});
var numOccurrences = occurrences.length;
var numElements = list.length;
return numOccurrences / numElements;
}
/**
* Computes Log with base-2
* @private
*/
function log2(n) {
return Math.log(n) / Math.log(2);
}
/**
* Finds element with highest occurrence in a list
* @private
*/
function mostCommon(list) {
var elementFrequencyMap = {};
var largestFrequency = -1;
var mostCommonElement = null;
list.forEach(function(element) {
var elementFrequency = (elementFrequencyMap[element] || 0) + 1;
elementFrequencyMap[element] = elementFrequency;
if (largestFrequency < elementFrequency) {
mostCommonElement = element;
largestFrequency = elementFrequency;
}
});
return mostCommonElement;
}
/**
* Generates random UUID
* @private
*/
function randomUUID() {
return "_r" + Math.random().toString(32).slice(2);
}
function depth(model) {
switch (model.type) {
case NODE_TYPES.RESULT: return 1;
case NODE_TYPES.FEATURE:
return 1+Comp.array.max(model.vals,function (val) {
return depth(val);
});
case NODE_TYPES.FEATURE_VALUE:
return 1+depth(model.child);
}
return 0;
}
function print(model) {
var line='',sep;
switch (model.type) {
case NODE_TYPES.RESULT:
return ' -> '+model.name;
case NODE_TYPES.FEATURE:
line='('+model.name+'?';
sep='';
Comp.array.iter(model.vals,function (v) {
line += sep+print(v);
sep=',';
});
return line+')';
case NODE_TYPES.FEATURE_VALUE:
return ' '+model.name+':'+print(model.child);
}
return 0;
}
module.exports = {
NODE_TYPES:NODE_TYPES,
createTree:createTree,
depth:depth,
entropy:entropy,
evaluate:evaluate,
predict:predict,
print:print,
current:function (module) { current=module.current; Aios=module;}
};