// the code is taken from https://github.com/mattlockyer/iat455/blob/6493c882f1956703133c1bffa1d7ee9a83741cbe/assignment1/assignment/effects/blur-effect-dyn.js // (c) Matt Lockyer, https://github.com/mattlockyer function hypotenuse(x1, y1, x2, y2) { var xSquare = Math.pow(x1 - x2, 2); var ySquare = Math.pow(y1 - y2, 2); return Math.sqrt(xSquare + ySquare); } /* * Generates a kernel used for the gaussian blur effect. * * @param dimension is an odd integer * @param sigma is the standard deviation used for our gaussian function. * * @returns an array with dimension^2 number of numbers, all less than or equal * to 1. Represents our gaussian blur kernel. */ function generateGaussianKernel(dimension, sigma) { if (!(dimension % 2) || Math.floor(dimension) !== dimension || dimension<3) { throw new Error( 'The dimension must be an odd integer greater than or equal to 3' ); } var kernel = []; var twoSigmaSquare = 2 * sigma * sigma; var centre = (dimension - 1) / 2; for (var i = 0; i < dimension; i++) { for (var j = 0; j < dimension; j++) { var distance = hypotenuse(i, j, centre, centre); // The following is an algorithm that came from the gaussian blur // wikipedia page [1]. // // http://en.wikipedia.org/w/index.php?title=Gaussian_blur&oldid=608793634#Mechanics var gaussian = (1 / Math.sqrt( Math.PI * twoSigmaSquare )) * Math.exp((-1) * (Math.pow(distance, 2) / twoSigmaSquare)); kernel.push(gaussian); } } // Returns the unit vector of the kernel array. var sum = kernel.reduce(function (c, p) { return c + p; }); return kernel.map(function (e) { return e / sum; }); } module.exports = generateGaussianKernel;