'use strict'; module.exports = rtree; module.exports.default = rtree; var Comp = Require('com/compat'); var quickselect = Require('x11/win/quickselect'); function rtree(maxEntries, format) { if (!(this instanceof rtree)) return new rtree(maxEntries, format); // max entries in a node is 9 by default; min node fill is 40% for best performance this._maxEntries = Math.max(4, maxEntries || 9); this._minEntries = Math.max(2, Math.ceil(this._maxEntries * 0.4)); if (format) { this._initFormat(format); } this.clear(); } rtree.prototype = { all: function () { return this._all(this.data, []); }, clear: function () { this.data = createNode([]); return this; }, collides: function (bbox) { var node = this.data, toBBox = this.toBBox; if (!intersects(bbox, node)) return false; var nodesToSearch = [], i, len, child, childBBox; while (node) { for (i = 0, len = node.children.length; i < len; i++) { child = node.children[i]; childBBox = node.leaf ? toBBox(child) : child; if (intersects(bbox, childBBox)) { if (node.leaf || contains(bbox, childBBox)) return true; nodesToSearch.push(child); } } node = nodesToSearch.pop(); } return false; }, load: function (data) { if (!(data && data.length)) return this; if (data.length < this._minEntries) { for (var i = 0, len = data.length; i < len; i++) { this.insert(data[i]); } return this; } // recursively build the tree with the given data from scratch using OMT algorithm var node = this._build(data.slice(), 0, data.length - 1, 0); if (!this.data.children.length) { // save as is if tree is empty this.data = node; } else if (this.data.height === node.height) { // split root if trees have the same height this._splitRoot(this.data, node); } else { if (this.data.height < node.height) { // swap trees if inserted one is bigger var tmpNode = this.data; this.data = node; node = tmpNode; } // insert the small tree into the large tree at appropriate level this._insert(node, this.data.height - node.height - 1, true); } return this; }, insert: function (item) { if (item) this._insert(item, this.data.height - 1); return this; }, print: function (node,indent) { if (!node) node=this.data; if (!indent) indent=0; var b=node, s='', sp=indent==0?'':Comp.printf.spaces(indent); s=sp+'['+b.x0+','+b.y0+':'+b.x1+','+b.y1+']'+ (node.shape?' '+node.shape.id:''); if (node.children) for(var i in node.children) { s+='\n'; s+=this.print(node.children[i],indent+2); } return s; }, remove: function (item, equalsFn) { if (!item) return this; var node = this.data, bbox = this.toBBox(item), path = [], indexes = [], i, parent, index, goingUp; // depth-first iterative tree traversal while (node || path.length) { if (!node) { // go up node = path.pop(); parent = path[path.length - 1]; i = indexes.pop(); goingUp = true; } if (node.leaf) { // check current node index = findItem(item, node.children, equalsFn); if (index !== -1) { // item found, remove the item and condense tree upwards node.children.splice(index, 1); path.push(node); this._condense(path); return this; } } if (!goingUp && !node.leaf && contains(node, bbox)) { // go down path.push(node); indexes.push(i); i = 0; parent = node; node = node.children[0]; } else if (parent) { // go right i++; node = parent.children[i]; goingUp = false; } else node = null; // nothing found } return this; }, search: function (bbox) { var node = this.data, result = [], toBBox = this.toBBox; if (!intersects(bbox, node)) return result; var nodesToSearch = [], i, len, child, childBBox; while (node) { for (i = 0, len = node.children.length; i < len; i++) { child = node.children[i]; childBBox = node.leaf ? toBBox(child) : child; if (intersects(bbox, childBBox)) { if (node.leaf) result.push(child); else if (contains(bbox, childBBox)) this._all(child, result); else nodesToSearch.push(child); } } node = nodesToSearch.pop(); } return result; }, // HELPERS toBBox: function (item) { return item; }, compareMinX: compareNodeMinX, compareMinY: compareNodeMinY, toJSON: function () { return this.data; }, fromJSON: function (data) { this.data = data; return this; }, BBoxGroup: function (nodes) { var bbox={x0:Number.MAX_VALUE,y0:Number.MAX_VALUE,x1:Number.MIN_VALUE,y1:Number.MIN_VALUE}; for(var i in nodes) { var node=nodes[i]; bbox.x0=Math.min(bbox.x0,node.x0); bbox.y0=Math.min(bbox.y0,node.y0); bbox.x1=Math.max(bbox.x1,node.x1); bbox.y1=Math.max(bbox.y1,node.y1); } return bbox; }, equal : function (bbox1,bbox2) { return bbox1.x0 == bbox2.x0 && bbox1.x1 == bbox2.x1 && bbox1.y0 == bbox2.y0 && bbox1.y1 == bbox2.y1; }, overlap : function (bbox1,bbox2) { // If one rectangle is on left side of other, l1.x > r2.x || l2.x > r1.x if (bbox1.x0 > bbox2.x1 || bbox2.x0 > bbox1.x1) return false; // If one rectangle is above other, l1.y < r2.y || l2.y < r1.y if (bbox1.y0 > bbox2.y1 || bbox2.y0 > bbox1.y1) return false; return true; }, within : function (bbox1,bbox2) { return bbox1.x0 >= bbox2.x0 && bbox1.x1 <= bbox2.x1 && bbox1.y0 >= bbox2.y0 && bbox1.y1 <= bbox2.y1; }, // INTERNALS _all: function (node, result) { var nodesToSearch = []; while (node) { if (node.leaf) result.push.apply(result, node.children); else nodesToSearch.push.apply(nodesToSearch, node.children); node = nodesToSearch.pop(); } return result; }, _build: function (items, left, right, height) { var N = right - left + 1, M = this._maxEntries, node; if (N <= M) { // reached leaf level; return leaf node = createNode(items.slice(left, right + 1)); calcBBox(node, this.toBBox); return node; } if (!height) { // target height of the bulk-loaded tree height = Math.ceil(Math.log(N) / Math.log(M)); // target number of root entries to maximize storage utilization M = Math.ceil(N / Math.pow(M, height - 1)); } node = createNode([]); node.leaf = false; node.height = height; // split the items into M mostly square tiles var N2 = Math.ceil(N / M), N1 = N2 * Math.ceil(Math.sqrt(M)), i, j, right2, right3; multiSelect(items, left, right, N1, this.compareMinX); for (i = left; i <= right; i += N1) { right2 = Math.min(i + N1 - 1, right); multiSelect(items, i, right2, N2, this.compareMinY); for (j = i; j <= right2; j += N2) { right3 = Math.min(j + N2 - 1, right2); // pack each entry recursively node.children.push(this._build(items, j, right3, height - 1)); } } calcBBox(node, this.toBBox); return node; }, _chooseSubtree: function (bbox, node, level, path) { var i, len, child, targetNode, area, enlargement, minArea, minEnlargement; while (true) { path.push(node); if (node.leaf || path.length - 1 === level) break; minArea = minEnlargement = Infinity; for (i = 0, len = node.children.length; i < len; i++) { child = node.children[i]; area = bboxArea(child); enlargement = enlargedArea(bbox, child) - area; // choose entry with the least area enlargement if (enlargement < minEnlargement) { minEnlargement = enlargement; minArea = area < minArea ? area : minArea; targetNode = child; } else if (enlargement === minEnlargement) { // otherwise choose one with the smallest area if (area < minArea) { minArea = area; targetNode = child; } } } node = targetNode || node.children[0]; } return node; }, _insert: function (item, level, isNode) { var toBBox = this.toBBox, bbox = isNode ? item : toBBox(item), insertPath = []; // find the best node for accommodating the item, saving all nodes along the path too var node = this._chooseSubtree(bbox, this.data, level, insertPath); // put the item into the node node.children.push(item); extend(node, bbox); // split on node overflow; propagate upwards if necessary while (level >= 0) { if (insertPath[level].children.length > this._maxEntries) { this._split(insertPath, level); level--; } else break; } // adjust bboxes along the insertion path this._adjustParentBBoxes(bbox, insertPath, level); }, // split overflowed node into two _split: function (insertPath, level) { var node = insertPath[level], M = node.children.length, m = this._minEntries; this._chooseSplitAxis(node, m, M); var splitIndex = this._chooseSplitIndex(node, m, M); var newNode = createNode(node.children.splice(splitIndex, node.children.length - splitIndex)); newNode.height = node.height; newNode.leaf = node.leaf; calcBBox(node, this.toBBox); calcBBox(newNode, this.toBBox); if (level) insertPath[level - 1].children.push(newNode); else this._splitRoot(node, newNode); }, _splitRoot: function (node, newNode) { // split root node this.data = createNode([node, newNode]); this.data.height = node.height + 1; this.data.leaf = false; calcBBox(this.data, this.toBBox); }, _chooseSplitIndex: function (node, m, M) { var i, bbox1, bbox2, overlap, area, minOverlap, minArea, index; minOverlap = minArea = Infinity; for (i = m; i <= M - m; i++) { bbox1 = distBBox(node, 0, i, this.toBBox); bbox2 = distBBox(node, i, M, this.toBBox); overlap = intersectionArea(bbox1, bbox2); area = bboxArea(bbox1) + bboxArea(bbox2); // choose distribution with minimum overlap if (overlap < minOverlap) { minOverlap = overlap; index = i; minArea = area < minArea ? area : minArea; } else if (overlap === minOverlap) { // otherwise choose distribution with minimum area if (area < minArea) { minArea = area; index = i; } } } return index; }, // sorts node children by the best axis for split _chooseSplitAxis: function (node, m, M) { var compareMinX = node.leaf ? this.compareMinX : compareNodeMinX, compareMinY = node.leaf ? this.compareMinY : compareNodeMinY, xMargin = this._allDistMargin(node, m, M, compareMinX), yMargin = this._allDistMargin(node, m, M, compareMinY); // if total distributions margin value is minimal for x, sort by x0, // otherwise it's already sorted by y0 if (xMargin < yMargin) node.children.sort(compareMinX); }, // total margin of all possible split distributions where each node is at least m full _allDistMargin: function (node, m, M, compare) { node.children.sort(compare); var toBBox = this.toBBox, leftBBox = distBBox(node, 0, m, toBBox), rightBBox = distBBox(node, M - m, M, toBBox), margin = bboxMargin(leftBBox) + bboxMargin(rightBBox), i, child; for (i = m; i < M - m; i++) { child = node.children[i]; extend(leftBBox, node.leaf ? toBBox(child) : child); margin += bboxMargin(leftBBox); } for (i = M - m - 1; i >= m; i--) { child = node.children[i]; extend(rightBBox, node.leaf ? toBBox(child) : child); margin += bboxMargin(rightBBox); } return margin; }, _adjustParentBBoxes: function (bbox, path, level) { // adjust bboxes along the given tree path for (var i = level; i >= 0; i--) { extend(path[i], bbox); } }, _condense: function (path) { // go through the path, removing empty nodes and updating bboxes for (var i = path.length - 1, siblings; i >= 0; i--) { if (path[i].children.length === 0) { if (i > 0) { siblings = path[i - 1].children; siblings.splice(siblings.indexOf(path[i]), 1); } else this.clear(); } else calcBBox(path[i], this.toBBox); } }, _initFormat: function (format) { // data format (x0, y0, x1, y1 accessors) // uses eval-type function compilation instead of just accepting a toBBox function // because the algorithms are very sensitive to sorting functions performance, // so they should be dead simple and without inner calls var compareArr = ['return a', ' - b', ';']; this.compareMinX = new Function('a', 'b', compareArr.join(format[0])); this.compareMinY = new Function('a', 'b', compareArr.join(format[1])); this.toBBox = new Function('a', 'return {x0: a' + format[0] + ', y0: a' + format[1] + ', x1: a' + format[2] + ', y1: a' + format[3] + '};'); } }; function findItem(item, items, equalsFn) { if (!equalsFn) return items.indexOf(item); for (var i = 0; i < items.length; i++) { if (equalsFn(item, items[i])) return i; } return -1; } // calculate node's bbox from bboxes of its children function calcBBox(node, toBBox) { distBBox(node, 0, node.children.length, toBBox, node); } // min bounding rectangle of node children from k to p-1 function distBBox(node, k, p, toBBox, destNode) { if (!destNode) destNode = createNode(null); destNode.x0 = Infinity; destNode.y0 = Infinity; destNode.x1 = -Infinity; destNode.y1 = -Infinity; for (var i = k, child; i < p; i++) { child = node.children[i]; extend(destNode, node.leaf ? toBBox(child) : child); } return destNode; } function extend(a, b) { a.x0 = Math.min(a.x0, b.x0); a.y0 = Math.min(a.y0, b.y0); a.x1 = Math.max(a.x1, b.x1); a.y1 = Math.max(a.y1, b.y1); return a; } function compareNodeMinX(a, b) { return a.x0 - b.x0; } function compareNodeMinY(a, b) { return a.y0 - b.y0; } function bboxArea(a) { return (a.x1 - a.x0) * (a.y1 - a.y0); } function bboxMargin(a) { return (a.x1 - a.x0) + (a.y1 - a.y0); } function enlargedArea(a, b) { return (Math.max(b.x1, a.x1) - Math.min(b.x0, a.x0)) * (Math.max(b.y1, a.y1) - Math.min(b.y0, a.y0)); } function intersectionArea(a, b) { var x0 = Math.max(a.x0, b.x0), y0 = Math.max(a.y0, b.y0), x1 = Math.min(a.x1, b.x1), y1 = Math.min(a.y1, b.y1); return Math.max(0, x1 - x0) * Math.max(0, y1 - y0); } function contains(a, b) { return a.x0 <= b.x0 && a.y0 <= b.y0 && b.x1 <= a.x1 && b.y1 <= a.y1; } function intersects(a, b) { return b.x0 <= a.x1 && b.y0 <= a.y1 && b.x1 >= a.x0 && b.y1 >= a.y0; } function createNode(children) { return { children: children, height: 1, leaf: true, x0: Infinity, y0: Infinity, x1: -Infinity, y1: -Infinity }; } // sort an array so that items come in groups of n unsorted items, with groups sorted between each other; // combines selection algorithm with binary divide & conquer approach function multiSelect(arr, left, right, n, compare) { var stack = [left, right], mid; while (stack.length) { right = stack.pop(); left = stack.pop(); if (right - left <= n) continue; mid = left + Math.ceil((right - left) / n / 2) * n; quickselect(arr, mid, left, right, compare); stack.push(left, mid, mid, right); } }