/** * Created by joonkukang on 2014. 1. 12.. */ var math = require('./utils').math; let LogisticRegression = module.exports = function (settings) { var self = this; self.x = settings['input']; self.y = settings['label']; self.W = math.zeroMat(settings['n_in'],settings['n_out']); self.b = math.zeroVec(settings['n_out']); self.settings = { 'log level' : 1 // 0 : nothing, 1 : info, 2: warn }; }; LogisticRegression.prototype.train = function (settings) { var self = this; var lr = 0.1, epochs = 200; if(typeof settings['input'] !== 'undefined') self.x = settings['input']; if(typeof settings['lr'] !== 'undefined') lr = settings['lr']; if(typeof settings['epochs'] !== 'undefined') epochs = settings['epochs']; var i; var currentProgress = 1; for(i=0;i 0) { var progress = (1.*i/epochs)*100; if(progress > currentProgress) { console.log("LogisticRegression",progress.toFixed(0),"% Completed."); currentProgress++; } } } if(self.settings['log level'] > 0) console.log("LogisticRegression Final Cross Entropy : ",self.getReconstructionCrossEntropy()); }; LogisticRegression.prototype.getReconstructionCrossEntropy = function () { var self = this; var probYgivenX = math.softmaxMat(math.addMatVec(math.mulMat(self.x,self.W),self.b)); var a = math.mulMatElementWise(self.y, math.activateMat(probYgivenX,Math.log)); var b = math.mulMatElementWise(math.mulMatScalar(math.addMatScalar(self.y,-1),-1), math.activateMat(math.mulMatScalar(math.addMatScalar(probYgivenX,-1),-1),Math.log)); var crossEntropy = -math.meanVec(math.sumMatAxis(math.addMat(a,b),1)); return crossEntropy; }; LogisticRegression.prototype.predict = function (x) { var self = this; return math.softmaxMat(math.addMatVec(math.mulMat(x,self.W),self.b)); }; LogisticRegression.prototype.set = function(property,value) { var self = this; self.settings[property] = value; }