Mon 21 Jul 22:43:21 CEST 2025

This commit is contained in:
sbosse 2025-07-21 23:07:30 +02:00
parent 6a4d4115e8
commit 93d4bd4303

102
js/ml/cnn.js Normal file
View File

@ -0,0 +1,102 @@
/**
** ==============================
** O O O OOOO
** O O O O O O
** O O O O O O
** OOOO OOOO O OOO OOOO
** O O O O O O O
** O O O O O O O
** OOOO OOOO O O OOOO
** ==============================
** Dr. Stefan Bosse http://www.bsslab.de
**
** COPYRIGHT: THIS SOFTWARE, EXECUTABLE AND SOURCE CODE IS OWNED
** BY THE AUTHOR(S).
** THIS SOURCE CODE MAY NOT BE COPIED, EXTRACTED,
** MODIFIED, OR OTHERWISE USED IN A CONTEXT
** OUTSIDE OF THE SOFTWARE SYSTEM.
**
** $AUTHORS: Stefan Bosse
** $CREATED: (C) 2006-2019 bLAB by sbosse
** $VERSION: 1.1.1
**
** $INFO:
**
** Convolutional neural network ML Algorithm
**
** Incremental learner using ml.update! Initial training data via ml.learn (or empty data set)
**
** $ENDOFINFO
*/
'use strict';
var Io = Require('com/io');
var Comp = Require('com/compat');
var current=none;
var Aios=none;
var convnetjs = Require('ml/convnet')
var that;
that = module.exports = {
// typeof options = {x:[][],y:[],width,height,depth,normalize?:[a,b],layers:{}[]..}
// format x = [ [row1=[col1=[z1,z2,..],col2,..],row2,..] ]
create : function (options) {
var net = new convnetjs.Net();
if (options.layers)
net.makeLayers(options.layers);
if (!options.iterations) options.iterations=10;
if (!options.depth) options.depth=1;
if (!options.width) options.width=options.x[0].length,options.height=1;
var trainer = new convnetjs.SGDTrainer(net, options.trainer||
{method: 'adadelta',
l2_decay: 0.001,
batch_size: 10});
// convert matrix (2dim/3dim) to volume elements
var x = options.x;
if (options.normalize) {
var a,b,
c=options.normalize[0],
d=options.normalize[1];
x.forEach(function (row) {
var min=Math.min.apply(null,row),
max=Math.max.apply(null,row);
if (a==undefined) a=min; else a=Math.min(a,min);
if (b==undefined) b=max; else b=Math.max(b,max);
})
x=x.map(function (row) {
return row.map(function (col) { return (((col-a)/(b-a))*(d-c))+c }) // scale [0,1] -> [c,d]
})
}
x=x.map(function (row) {
var vol = new convnetjs.Vol(options.width, options.height, options.depth, 0.0); //input volume (image)
vol.w = row;
return vol;
});
x.forEach (function (row) {
//net.forward(row);
})
var y = options.y;
if (!options.targets) {
options.targets=that.ml.stats.unique(y);
}
for(var iters=0;iters<options.iterations;iters++) {
y.forEach(function (v,i) {
trainer.train(x[i],options.targets.indexOf(v));
})
}
trainer.options= {width:options.width,height:options.height,depth:options.depth,targets:options.targets};
return trainer;
},
ml:{},
predict: function (model,sample) {
var options = model.options;
var vol = new convnetjs.Vol(options.width, options.height, options.depth, 0.0); //input volume (image)
vol.w = sample;
return model.net.forward(vol);
},
print: function () {
},
update: function (data) {
},
current:function (module) { current=module.current; Aios=module;}
};