Mon 21 Jul 22:43:21 CEST 2025
This commit is contained in:
parent
6a4d4115e8
commit
93d4bd4303
102
js/ml/cnn.js
Normal file
102
js/ml/cnn.js
Normal file
|
@ -0,0 +1,102 @@
|
|||
/**
|
||||
** ==============================
|
||||
** O O O OOOO
|
||||
** O O O O O O
|
||||
** O O O O O O
|
||||
** OOOO OOOO O OOO OOOO
|
||||
** O O O O O O O
|
||||
** O O O O O O O
|
||||
** OOOO OOOO O O OOOO
|
||||
** ==============================
|
||||
** Dr. Stefan Bosse http://www.bsslab.de
|
||||
**
|
||||
** COPYRIGHT: THIS SOFTWARE, EXECUTABLE AND SOURCE CODE IS OWNED
|
||||
** BY THE AUTHOR(S).
|
||||
** THIS SOURCE CODE MAY NOT BE COPIED, EXTRACTED,
|
||||
** MODIFIED, OR OTHERWISE USED IN A CONTEXT
|
||||
** OUTSIDE OF THE SOFTWARE SYSTEM.
|
||||
**
|
||||
** $AUTHORS: Stefan Bosse
|
||||
** $CREATED: (C) 2006-2019 bLAB by sbosse
|
||||
** $VERSION: 1.1.1
|
||||
**
|
||||
** $INFO:
|
||||
**
|
||||
** Convolutional neural network ML Algorithm
|
||||
**
|
||||
** Incremental learner using ml.update! Initial training data via ml.learn (or empty data set)
|
||||
**
|
||||
** $ENDOFINFO
|
||||
*/
|
||||
'use strict';
|
||||
var Io = Require('com/io');
|
||||
var Comp = Require('com/compat');
|
||||
var current=none;
|
||||
var Aios=none;
|
||||
|
||||
var convnetjs = Require('ml/convnet')
|
||||
var that;
|
||||
|
||||
that = module.exports = {
|
||||
// typeof options = {x:[][],y:[],width,height,depth,normalize?:[a,b],layers:{}[]..}
|
||||
// format x = [ [row1=[col1=[z1,z2,..],col2,..],row2,..] ]
|
||||
create : function (options) {
|
||||
var net = new convnetjs.Net();
|
||||
if (options.layers)
|
||||
net.makeLayers(options.layers);
|
||||
if (!options.iterations) options.iterations=10;
|
||||
if (!options.depth) options.depth=1;
|
||||
if (!options.width) options.width=options.x[0].length,options.height=1;
|
||||
var trainer = new convnetjs.SGDTrainer(net, options.trainer||
|
||||
{method: 'adadelta',
|
||||
l2_decay: 0.001,
|
||||
batch_size: 10});
|
||||
// convert matrix (2dim/3dim) to volume elements
|
||||
var x = options.x;
|
||||
if (options.normalize) {
|
||||
var a,b,
|
||||
c=options.normalize[0],
|
||||
d=options.normalize[1];
|
||||
x.forEach(function (row) {
|
||||
var min=Math.min.apply(null,row),
|
||||
max=Math.max.apply(null,row);
|
||||
if (a==undefined) a=min; else a=Math.min(a,min);
|
||||
if (b==undefined) b=max; else b=Math.max(b,max);
|
||||
})
|
||||
x=x.map(function (row) {
|
||||
return row.map(function (col) { return (((col-a)/(b-a))*(d-c))+c }) // scale [0,1] -> [c,d]
|
||||
})
|
||||
}
|
||||
x=x.map(function (row) {
|
||||
var vol = new convnetjs.Vol(options.width, options.height, options.depth, 0.0); //input volume (image)
|
||||
vol.w = row;
|
||||
return vol;
|
||||
});
|
||||
x.forEach (function (row) {
|
||||
//net.forward(row);
|
||||
})
|
||||
var y = options.y;
|
||||
if (!options.targets) {
|
||||
options.targets=that.ml.stats.unique(y);
|
||||
}
|
||||
for(var iters=0;iters<options.iterations;iters++) {
|
||||
y.forEach(function (v,i) {
|
||||
trainer.train(x[i],options.targets.indexOf(v));
|
||||
})
|
||||
}
|
||||
trainer.options= {width:options.width,height:options.height,depth:options.depth,targets:options.targets};
|
||||
return trainer;
|
||||
},
|
||||
ml:{},
|
||||
predict: function (model,sample) {
|
||||
var options = model.options;
|
||||
var vol = new convnetjs.Vol(options.width, options.height, options.depth, 0.0); //input volume (image)
|
||||
vol.w = sample;
|
||||
return model.net.forward(vol);
|
||||
},
|
||||
print: function () {
|
||||
},
|
||||
update: function (data) {
|
||||
},
|
||||
current:function (module) { current=module.current; Aios=module;}
|
||||
};
|
Loading…
Reference in New Issue
Block a user