Tue 27 Aug 00:14:56 CEST 2024
This commit is contained in:
		
							parent
							
								
									6b051735a8
								
							
						
					
					
						commit
						870e244c47
					
				
							
								
								
									
										28
									
								
								test/test-svm2.js
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										28
									
								
								test/test-svm2.js
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
					@ -0,0 +1,28 @@
 | 
				
			||||||
 | 
					var x = [[0, 0, 0], [0, 1, 1], [1, 1, 0], [2, 2, 2], [1, 2, 2], [2, 1, 2]];
 | 
				
			||||||
 | 
					var y = ['A', 'A', 'B', 'B', 'C', 'C'];
 | 
				
			||||||
 | 
					var model = ml.learn({
 | 
				
			||||||
 | 
					    algorithm:ml.ML.SVM,
 | 
				
			||||||
 | 
					    x:x, 
 | 
				
			||||||
 | 
					    y:y,
 | 
				
			||||||
 | 
					    threshold:false,  // no threshold function on output; highest value of svms is winner
 | 
				
			||||||
 | 
					    labels:['A','B','C'],  // multi-SVM
 | 
				
			||||||
 | 
					    C : 15.0, // default : 1.0. C in SVM.
 | 
				
			||||||
 | 
					    tol : 1e-5, // default : 1e-4. Higher tolerance --> Higher precision
 | 
				
			||||||
 | 
					    max_passes : 200, // default : 20. Higher max_passes --> Higher precision
 | 
				
			||||||
 | 
					    alpha_tol : 1e-5, // default : 1e-5. Higher alpha_tolerance --> Higher precision
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    kernel : { type: 'rbf', sigma: 0.5 } // { type: "polynomial", c: 1, d: 5}
 | 
				
			||||||
 | 
					});
 | 
				
			||||||
 | 
					print(toJSON(model).length+' Bytes')
 | 
				
			||||||
 | 
					print(model)
 | 
				
			||||||
 | 
					print(model.svms[0])
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					var test_data =[[0, 1.2, 0],
 | 
				
			||||||
 | 
					                [2.1, 2, 3],
 | 
				
			||||||
 | 
					                [2.1,1.1,2.0]
 | 
				
			||||||
 | 
					];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					print(ml.classify(model,x))
 | 
				
			||||||
 | 
					print(ml.classify(model,x.map(function (row) { return row.map(function (col) { return col+random(-0.3,0.3,0.001) })})))
 | 
				
			||||||
 | 
					print(ml.classify(model,test_data))
 | 
				
			||||||
 | 
					print(ml.stats.utils.best(ml.classify(model,[1,2,3])))
 | 
				
			||||||
		Loading…
	
		Reference in New Issue
	
	Block a user