Mon 21 Jul 22:43:21 CEST 2025
This commit is contained in:
parent
3e7d95b45f
commit
843ea67316
|
@ -0,0 +1,681 @@
|
|||
/**
|
||||
* Copyright (c) 2006-2015, JGraph Ltd
|
||||
* Copyright (c) 2006-2015, Gaudenz Alder
|
||||
*/
|
||||
/**
|
||||
* Class: mxGraphHierarchyModel
|
||||
*
|
||||
* Internal model of a hierarchical graph. This model stores nodes and edges
|
||||
* equivalent to the real graph nodes and edges, but also stores the rank of the
|
||||
* cells, the order within the ranks and the new candidate locations of cells.
|
||||
* The internal model also reverses edge direction were appropriate , ignores
|
||||
* self-loop and groups parallels together under one edge object.
|
||||
*
|
||||
* Constructor: mxGraphHierarchyModel
|
||||
*
|
||||
* Creates an internal ordered graph model using the vertices passed in. If
|
||||
* there are any, leftward edge need to be inverted in the internal model
|
||||
*
|
||||
* Arguments:
|
||||
*
|
||||
* graph - the facade describing the graph to be operated on
|
||||
* vertices - the vertices for this hierarchy
|
||||
* ordered - whether or not the vertices are already ordered
|
||||
* deterministic - whether or not this layout should be deterministic on each
|
||||
* tightenToSource - whether or not to tighten vertices towards the sources
|
||||
* scanRanksFromSinks - Whether rank assignment is from the sinks or sources.
|
||||
* usage
|
||||
*/
|
||||
function mxGraphHierarchyModel(layout, vertices, roots, parent, tightenToSource)
|
||||
{
|
||||
var graph = layout.getGraph();
|
||||
this.tightenToSource = tightenToSource;
|
||||
this.roots = roots;
|
||||
this.parent = parent;
|
||||
|
||||
// map of cells to internal cell needed for second run through
|
||||
// to setup the sink of edges correctly
|
||||
this.vertexMapper = new mxDictionary();
|
||||
this.edgeMapper = new mxDictionary();
|
||||
this.maxRank = 0;
|
||||
var internalVertices = [];
|
||||
|
||||
if (vertices == null)
|
||||
{
|
||||
vertices = this.graph.getChildVertices(parent);
|
||||
}
|
||||
|
||||
this.maxRank = this.SOURCESCANSTARTRANK;
|
||||
// map of cells to internal cell needed for second run through
|
||||
// to setup the sink of edges correctly. Guess size by number
|
||||
// of edges is roughly same as number of vertices.
|
||||
this.createInternalCells(layout, vertices, internalVertices);
|
||||
|
||||
// Go through edges set their sink values. Also check the
|
||||
// ordering if and invert edges if necessary
|
||||
for (var i = 0; i < vertices.length; i++)
|
||||
{
|
||||
var edges = internalVertices[i].connectsAsSource;
|
||||
|
||||
for (var j = 0; j < edges.length; j++)
|
||||
{
|
||||
var internalEdge = edges[j];
|
||||
var realEdges = internalEdge.edges;
|
||||
|
||||
// Only need to process the first real edge, since
|
||||
// all the edges connect to the same other vertex
|
||||
if (realEdges != null && realEdges.length > 0)
|
||||
{
|
||||
var realEdge = realEdges[0];
|
||||
var targetCell = layout.getVisibleTerminal(
|
||||
realEdge, false);
|
||||
var internalTargetCell = this.vertexMapper.get(targetCell);
|
||||
|
||||
if (internalVertices[i] == internalTargetCell)
|
||||
{
|
||||
// If there are parallel edges going between two vertices and not all are in the same direction
|
||||
// you can have navigated across one direction when doing the cycle reversal that isn't the same
|
||||
// direction as the first real edge in the array above. When that happens the if above catches
|
||||
// that and we correct the target cell before continuing.
|
||||
// This branch only detects this single case
|
||||
targetCell = layout.getVisibleTerminal(
|
||||
realEdge, true);
|
||||
internalTargetCell = this.vertexMapper.get(targetCell);
|
||||
}
|
||||
|
||||
if (internalTargetCell != null
|
||||
&& internalVertices[i] != internalTargetCell)
|
||||
{
|
||||
internalEdge.target = internalTargetCell;
|
||||
|
||||
if (internalTargetCell.connectsAsTarget.length == 0)
|
||||
{
|
||||
internalTargetCell.connectsAsTarget = [];
|
||||
}
|
||||
|
||||
if (mxUtils.indexOf(internalTargetCell.connectsAsTarget, internalEdge) < 0)
|
||||
{
|
||||
internalTargetCell.connectsAsTarget.push(internalEdge);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Use the temp variable in the internal nodes to mark this
|
||||
// internal vertex as having been visited.
|
||||
internalVertices[i].temp[0] = 1;
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* Variable: maxRank
|
||||
*
|
||||
* Stores the largest rank number allocated
|
||||
*/
|
||||
mxGraphHierarchyModel.prototype.maxRank = null;
|
||||
|
||||
/**
|
||||
* Variable: vertexMapper
|
||||
*
|
||||
* Map from graph vertices to internal model nodes.
|
||||
*/
|
||||
mxGraphHierarchyModel.prototype.vertexMapper = null;
|
||||
|
||||
/**
|
||||
* Variable: edgeMapper
|
||||
*
|
||||
* Map from graph edges to internal model edges
|
||||
*/
|
||||
mxGraphHierarchyModel.prototype.edgeMapper = null;
|
||||
|
||||
/**
|
||||
* Variable: ranks
|
||||
*
|
||||
* Mapping from rank number to actual rank
|
||||
*/
|
||||
mxGraphHierarchyModel.prototype.ranks = null;
|
||||
|
||||
/**
|
||||
* Variable: roots
|
||||
*
|
||||
* Store of roots of this hierarchy model, these are real graph cells, not
|
||||
* internal cells
|
||||
*/
|
||||
mxGraphHierarchyModel.prototype.roots = null;
|
||||
|
||||
/**
|
||||
* Variable: parent
|
||||
*
|
||||
* The parent cell whose children are being laid out
|
||||
*/
|
||||
mxGraphHierarchyModel.prototype.parent = null;
|
||||
|
||||
/**
|
||||
* Variable: dfsCount
|
||||
*
|
||||
* Count of the number of times the ancestor dfs has been used.
|
||||
*/
|
||||
mxGraphHierarchyModel.prototype.dfsCount = 0;
|
||||
|
||||
/**
|
||||
* Variable: SOURCESCANSTARTRANK
|
||||
*
|
||||
* High value to start source layering scan rank value from.
|
||||
*/
|
||||
mxGraphHierarchyModel.prototype.SOURCESCANSTARTRANK = 100000000;
|
||||
|
||||
/**
|
||||
* Variable: tightenToSource
|
||||
*
|
||||
* Whether or not to tighten the assigned ranks of vertices up towards
|
||||
* the source cells.
|
||||
*/
|
||||
mxGraphHierarchyModel.prototype.tightenToSource = false;
|
||||
|
||||
/**
|
||||
* Function: createInternalCells
|
||||
*
|
||||
* Creates all edges in the internal model
|
||||
*
|
||||
* Parameters:
|
||||
*
|
||||
* layout - Reference to the <mxHierarchicalLayout> algorithm.
|
||||
* vertices - Array of <mxCells> that represent the vertices whom are to
|
||||
* have an internal representation created.
|
||||
* internalVertices - The array of <mxGraphHierarchyNodes> to have their
|
||||
* information filled in using the real vertices.
|
||||
*/
|
||||
mxGraphHierarchyModel.prototype.createInternalCells = function(layout, vertices, internalVertices)
|
||||
{
|
||||
var graph = layout.getGraph();
|
||||
|
||||
// Create internal edges
|
||||
for (var i = 0; i < vertices.length; i++)
|
||||
{
|
||||
internalVertices[i] = new mxGraphHierarchyNode(vertices[i]);
|
||||
this.vertexMapper.put(vertices[i], internalVertices[i]);
|
||||
|
||||
// If the layout is deterministic, order the cells
|
||||
//List outgoingCells = graph.getNeighbours(vertices[i], deterministic);
|
||||
var conns = layout.getEdges(vertices[i]);
|
||||
internalVertices[i].connectsAsSource = [];
|
||||
|
||||
// Create internal edges, but don't do any rank assignment yet
|
||||
// First use the information from the greedy cycle remover to
|
||||
// invert the leftward edges internally
|
||||
for (var j = 0; j < conns.length; j++)
|
||||
{
|
||||
var cell = layout.getVisibleTerminal(conns[j], false);
|
||||
|
||||
// Looking for outgoing edges only
|
||||
if (cell != vertices[i] && layout.graph.model.isVertex(cell) &&
|
||||
!layout.isVertexIgnored(cell))
|
||||
{
|
||||
// We process all edge between this source and its targets
|
||||
// If there are edges going both ways, we need to collect
|
||||
// them all into one internal edges to avoid looping problems
|
||||
// later. We assume this direction (source -> target) is the
|
||||
// natural direction if at least half the edges are going in
|
||||
// that direction.
|
||||
|
||||
// The check below for edges[0] being in the vertex mapper is
|
||||
// in case we've processed this the other way around
|
||||
// (target -> source) and the number of edges in each direction
|
||||
// are the same. All the graph edges will have been assigned to
|
||||
// an internal edge going the other way, so we don't want to
|
||||
// process them again
|
||||
var undirectedEdges = layout.getEdgesBetween(vertices[i],
|
||||
cell, false);
|
||||
var directedEdges = layout.getEdgesBetween(vertices[i],
|
||||
cell, true);
|
||||
|
||||
if (undirectedEdges != null &&
|
||||
undirectedEdges.length > 0 &&
|
||||
this.edgeMapper.get(undirectedEdges[0]) == null &&
|
||||
directedEdges.length * 2 >= undirectedEdges.length)
|
||||
{
|
||||
var internalEdge = new mxGraphHierarchyEdge(undirectedEdges);
|
||||
|
||||
for (var k = 0; k < undirectedEdges.length; k++)
|
||||
{
|
||||
var edge = undirectedEdges[k];
|
||||
this.edgeMapper.put(edge, internalEdge);
|
||||
|
||||
// Resets all point on the edge and disables the edge style
|
||||
// without deleting it from the cell style
|
||||
graph.resetEdge(edge);
|
||||
|
||||
if (layout.disableEdgeStyle)
|
||||
{
|
||||
layout.setEdgeStyleEnabled(edge, false);
|
||||
layout.setOrthogonalEdge(edge,true);
|
||||
}
|
||||
}
|
||||
|
||||
internalEdge.source = internalVertices[i];
|
||||
|
||||
if (mxUtils.indexOf(internalVertices[i].connectsAsSource, internalEdge) < 0)
|
||||
{
|
||||
internalVertices[i].connectsAsSource.push(internalEdge);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Ensure temp variable is cleared from any previous use
|
||||
internalVertices[i].temp[0] = 0;
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* Function: initialRank
|
||||
*
|
||||
* Basic determination of minimum layer ranking by working from from sources
|
||||
* or sinks and working through each node in the relevant edge direction.
|
||||
* Starting at the sinks is basically a longest path layering algorithm.
|
||||
*/
|
||||
mxGraphHierarchyModel.prototype.initialRank = function()
|
||||
{
|
||||
var startNodes = [];
|
||||
|
||||
if (this.roots != null)
|
||||
{
|
||||
for (var i = 0; i < this.roots.length; i++)
|
||||
{
|
||||
var internalNode = this.vertexMapper.get(this.roots[i]);
|
||||
|
||||
if (internalNode != null)
|
||||
{
|
||||
startNodes.push(internalNode);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
var internalNodes = this.vertexMapper.getValues();
|
||||
|
||||
for (var i=0; i < internalNodes.length; i++)
|
||||
{
|
||||
// Mark the node as not having had a layer assigned
|
||||
internalNodes[i].temp[0] = -1;
|
||||
}
|
||||
|
||||
var startNodesCopy = startNodes.slice();
|
||||
|
||||
while (startNodes.length > 0)
|
||||
{
|
||||
var internalNode = startNodes[0];
|
||||
var layerDeterminingEdges;
|
||||
var edgesToBeMarked;
|
||||
|
||||
layerDeterminingEdges = internalNode.connectsAsTarget;
|
||||
edgesToBeMarked = internalNode.connectsAsSource;
|
||||
|
||||
// flag to keep track of whether or not all layer determining
|
||||
// edges have been scanned
|
||||
var allEdgesScanned = true;
|
||||
|
||||
// Work out the layer of this node from the layer determining
|
||||
// edges. The minimum layer number of any node connected by one of
|
||||
// the layer determining edges variable
|
||||
var minimumLayer = this.SOURCESCANSTARTRANK;
|
||||
|
||||
for (var i = 0; i < layerDeterminingEdges.length; i++)
|
||||
{
|
||||
var internalEdge = layerDeterminingEdges[i];
|
||||
|
||||
if (internalEdge.temp[0] == 5270620)
|
||||
{
|
||||
// This edge has been scanned, get the layer of the
|
||||
// node on the other end
|
||||
var otherNode = internalEdge.source;
|
||||
minimumLayer = Math.min(minimumLayer, otherNode.temp[0] - 1);
|
||||
}
|
||||
else
|
||||
{
|
||||
allEdgesScanned = false;
|
||||
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// If all edge have been scanned, assign the layer, mark all
|
||||
// edges in the other direction and remove from the nodes list
|
||||
if (allEdgesScanned)
|
||||
{
|
||||
internalNode.temp[0] = minimumLayer;
|
||||
this.maxRank = Math.min(this.maxRank, minimumLayer);
|
||||
|
||||
if (edgesToBeMarked != null)
|
||||
{
|
||||
for (var i = 0; i < edgesToBeMarked.length; i++)
|
||||
{
|
||||
var internalEdge = edgesToBeMarked[i];
|
||||
|
||||
// Assign unique stamp ( y/m/d/h )
|
||||
internalEdge.temp[0] = 5270620;
|
||||
|
||||
// Add node on other end of edge to LinkedList of
|
||||
// nodes to be analysed
|
||||
var otherNode = internalEdge.target;
|
||||
|
||||
// Only add node if it hasn't been assigned a layer
|
||||
if (otherNode.temp[0] == -1)
|
||||
{
|
||||
startNodes.push(otherNode);
|
||||
|
||||
// Mark this other node as neither being
|
||||
// unassigned nor assigned so it isn't
|
||||
// added to this list again, but it's
|
||||
// layer isn't used in any calculation.
|
||||
otherNode.temp[0] = -2;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
startNodes.shift();
|
||||
}
|
||||
else
|
||||
{
|
||||
// Not all the edges have been scanned, get to the back of
|
||||
// the class and put the dunces cap on
|
||||
var removedCell = startNodes.shift();
|
||||
startNodes.push(internalNode);
|
||||
|
||||
if (removedCell == internalNode && startNodes.length == 1)
|
||||
{
|
||||
// This is an error condition, we can't get out of
|
||||
// this loop. It could happen for more than one node
|
||||
// but that's a lot harder to detect. Log the error
|
||||
// TODO make log comment
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Normalize the ranks down from their large starting value to place
|
||||
// at least 1 sink on layer 0
|
||||
for (var i=0; i < internalNodes.length; i++)
|
||||
{
|
||||
// Mark the node as not having had a layer assigned
|
||||
internalNodes[i].temp[0] -= this.maxRank;
|
||||
}
|
||||
|
||||
// Tighten the rank 0 nodes as far as possible
|
||||
for ( var i = 0; i < startNodesCopy.length; i++)
|
||||
{
|
||||
var internalNode = startNodesCopy[i];
|
||||
var currentMaxLayer = 0;
|
||||
var layerDeterminingEdges = internalNode.connectsAsSource;
|
||||
|
||||
for ( var j = 0; j < layerDeterminingEdges.length; j++)
|
||||
{
|
||||
var internalEdge = layerDeterminingEdges[j];
|
||||
var otherNode = internalEdge.target;
|
||||
internalNode.temp[0] = Math.max(currentMaxLayer,
|
||||
otherNode.temp[0] + 1);
|
||||
currentMaxLayer = internalNode.temp[0];
|
||||
}
|
||||
}
|
||||
|
||||
// Reset the maxRank to that which would be expected for a from-sink
|
||||
// scan
|
||||
this.maxRank = this.SOURCESCANSTARTRANK - this.maxRank;
|
||||
};
|
||||
|
||||
/**
|
||||
* Function: fixRanks
|
||||
*
|
||||
* Fixes the layer assignments to the values stored in the nodes. Also needs
|
||||
* to create dummy nodes for edges that cross layers.
|
||||
*/
|
||||
mxGraphHierarchyModel.prototype.fixRanks = function()
|
||||
{
|
||||
var rankList = [];
|
||||
this.ranks = [];
|
||||
|
||||
for (var i = 0; i < this.maxRank + 1; i++)
|
||||
{
|
||||
rankList[i] = [];
|
||||
this.ranks[i] = rankList[i];
|
||||
}
|
||||
|
||||
// Perform a DFS to obtain an initial ordering for each rank.
|
||||
// Without doing this you would end up having to process
|
||||
// crossings for a standard tree.
|
||||
var rootsArray = null;
|
||||
|
||||
if (this.roots != null)
|
||||
{
|
||||
var oldRootsArray = this.roots;
|
||||
rootsArray = [];
|
||||
|
||||
for (var i = 0; i < oldRootsArray.length; i++)
|
||||
{
|
||||
var cell = oldRootsArray[i];
|
||||
var internalNode = this.vertexMapper.get(cell);
|
||||
rootsArray[i] = internalNode;
|
||||
}
|
||||
}
|
||||
|
||||
this.visit(function(parent, node, edge, layer, seen)
|
||||
{
|
||||
if (seen == 0 && node.maxRank < 0 && node.minRank < 0)
|
||||
{
|
||||
rankList[node.temp[0]].push(node);
|
||||
node.maxRank = node.temp[0];
|
||||
node.minRank = node.temp[0];
|
||||
|
||||
// Set temp[0] to the nodes position in the rank
|
||||
node.temp[0] = rankList[node.maxRank].length - 1;
|
||||
}
|
||||
|
||||
if (parent != null && edge != null)
|
||||
{
|
||||
var parentToCellRankDifference = parent.maxRank - node.maxRank;
|
||||
|
||||
if (parentToCellRankDifference > 1)
|
||||
{
|
||||
// There are ranks in between the parent and current cell
|
||||
edge.maxRank = parent.maxRank;
|
||||
edge.minRank = node.maxRank;
|
||||
edge.temp = [];
|
||||
edge.x = [];
|
||||
edge.y = [];
|
||||
|
||||
for (var i = edge.minRank + 1; i < edge.maxRank; i++)
|
||||
{
|
||||
// The connecting edge must be added to the
|
||||
// appropriate ranks
|
||||
rankList[i].push(edge);
|
||||
edge.setGeneralPurposeVariable(i, rankList[i]
|
||||
.length - 1);
|
||||
}
|
||||
}
|
||||
}
|
||||
}, rootsArray, false, null);
|
||||
};
|
||||
|
||||
/**
|
||||
* Function: visit
|
||||
*
|
||||
* A depth first search through the internal heirarchy model.
|
||||
*
|
||||
* Parameters:
|
||||
*
|
||||
* visitor - The visitor function pattern to be called for each node.
|
||||
* trackAncestors - Whether or not the search is to keep track all nodes
|
||||
* directly above this one in the search path.
|
||||
*/
|
||||
mxGraphHierarchyModel.prototype.visit = function(visitor, dfsRoots, trackAncestors, seenNodes)
|
||||
{
|
||||
// Run dfs through on all roots
|
||||
if (dfsRoots != null)
|
||||
{
|
||||
for (var i = 0; i < dfsRoots.length; i++)
|
||||
{
|
||||
var internalNode = dfsRoots[i];
|
||||
|
||||
if (internalNode != null)
|
||||
{
|
||||
if (seenNodes == null)
|
||||
{
|
||||
seenNodes = new Object();
|
||||
}
|
||||
|
||||
if (trackAncestors)
|
||||
{
|
||||
// Set up hash code for root
|
||||
internalNode.hashCode = [];
|
||||
internalNode.hashCode[0] = this.dfsCount;
|
||||
internalNode.hashCode[1] = i;
|
||||
this.extendedDfs(null, internalNode, null, visitor, seenNodes,
|
||||
internalNode.hashCode, i, 0);
|
||||
}
|
||||
else
|
||||
{
|
||||
this.dfs(null, internalNode, null, visitor, seenNodes, 0);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
this.dfsCount++;
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* Function: dfs
|
||||
*
|
||||
* Performs a depth first search on the internal hierarchy model
|
||||
*
|
||||
* Parameters:
|
||||
*
|
||||
* parent - the parent internal node of the current internal node
|
||||
* root - the current internal node
|
||||
* connectingEdge - the internal edge connecting the internal node and the parent
|
||||
* internal node, if any
|
||||
* visitor - the visitor pattern to be called for each node
|
||||
* seen - a set of all nodes seen by this dfs a set of all of the
|
||||
* ancestor node of the current node
|
||||
* layer - the layer on the dfs tree ( not the same as the model ranks )
|
||||
*/
|
||||
mxGraphHierarchyModel.prototype.dfs = function(parent, root, connectingEdge, visitor, seen, layer)
|
||||
{
|
||||
if (root != null)
|
||||
{
|
||||
var rootId = root.id;
|
||||
|
||||
if (seen[rootId] == null)
|
||||
{
|
||||
seen[rootId] = root;
|
||||
visitor(parent, root, connectingEdge, layer, 0);
|
||||
|
||||
// Copy the connects as source list so that visitors
|
||||
// can change the original for edge direction inversions
|
||||
var outgoingEdges = root.connectsAsSource.slice();
|
||||
|
||||
for (var i = 0; i< outgoingEdges.length; i++)
|
||||
{
|
||||
var internalEdge = outgoingEdges[i];
|
||||
var targetNode = internalEdge.target;
|
||||
|
||||
// Root check is O(|roots|)
|
||||
this.dfs(root, targetNode, internalEdge, visitor, seen,
|
||||
layer + 1);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
// Use the int field to indicate this node has been seen
|
||||
visitor(parent, root, connectingEdge, layer, 1);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* Function: extendedDfs
|
||||
*
|
||||
* Performs a depth first search on the internal hierarchy model. This dfs
|
||||
* extends the default version by keeping track of cells ancestors, but it
|
||||
* should be only used when necessary because of it can be computationally
|
||||
* intensive for deep searches.
|
||||
*
|
||||
* Parameters:
|
||||
*
|
||||
* parent - the parent internal node of the current internal node
|
||||
* root - the current internal node
|
||||
* connectingEdge - the internal edge connecting the internal node and the parent
|
||||
* internal node, if any
|
||||
* visitor - the visitor pattern to be called for each node
|
||||
* seen - a set of all nodes seen by this dfs
|
||||
* ancestors - the parent hash code
|
||||
* childHash - the new hash code for this node
|
||||
* layer - the layer on the dfs tree ( not the same as the model ranks )
|
||||
*/
|
||||
mxGraphHierarchyModel.prototype.extendedDfs = function(parent, root, connectingEdge, visitor, seen, ancestors, childHash, layer)
|
||||
{
|
||||
// Explanation of custom hash set. Previously, the ancestors variable
|
||||
// was passed through the dfs as a HashSet. The ancestors were copied
|
||||
// into a new HashSet and when the new child was processed it was also
|
||||
// added to the set. If the current node was in its ancestor list it
|
||||
// meant there is a cycle in the graph and this information is passed
|
||||
// to the visitor.visit() in the seen parameter. The HashSet clone was
|
||||
// very expensive on CPU so a custom hash was developed using primitive
|
||||
// types. temp[] couldn't be used so hashCode[] was added to each node.
|
||||
// Each new child adds another int to the array, copying the prefix
|
||||
// from its parent. Child of the same parent add different ints (the
|
||||
// limit is therefore 2^32 children per parent...). If a node has a
|
||||
// child with the hashCode already set then the child code is compared
|
||||
// to the same portion of the current nodes array. If they match there
|
||||
// is a loop.
|
||||
// Note that the basic mechanism would only allow for 1 use of this
|
||||
// functionality, so the root nodes have two ints. The second int is
|
||||
// incremented through each node root and the first is incremented
|
||||
// through each run of the dfs algorithm (therefore the dfs is not
|
||||
// thread safe). The hash code of each node is set if not already set,
|
||||
// or if the first int does not match that of the current run.
|
||||
if (root != null)
|
||||
{
|
||||
if (parent != null)
|
||||
{
|
||||
// Form this nodes hash code if necessary, that is, if the
|
||||
// hashCode variable has not been initialized or if the
|
||||
// start of the parent hash code does not equal the start of
|
||||
// this nodes hash code, indicating the code was set on a
|
||||
// previous run of this dfs.
|
||||
if (root.hashCode == null ||
|
||||
root.hashCode[0] != parent.hashCode[0])
|
||||
{
|
||||
var hashCodeLength = parent.hashCode.length + 1;
|
||||
root.hashCode = parent.hashCode.slice();
|
||||
root.hashCode[hashCodeLength - 1] = childHash;
|
||||
}
|
||||
}
|
||||
|
||||
var rootId = root.id;
|
||||
|
||||
if (seen[rootId] == null)
|
||||
{
|
||||
seen[rootId] = root;
|
||||
visitor(parent, root, connectingEdge, layer, 0);
|
||||
|
||||
// Copy the connects as source list so that visitors
|
||||
// can change the original for edge direction inversions
|
||||
var outgoingEdges = root.connectsAsSource.slice();
|
||||
|
||||
for (var i = 0; i < outgoingEdges.length; i++)
|
||||
{
|
||||
var internalEdge = outgoingEdges[i];
|
||||
var targetNode = internalEdge.target;
|
||||
|
||||
// Root check is O(|roots|)
|
||||
this.extendedDfs(root, targetNode, internalEdge, visitor, seen,
|
||||
root.hashCode, i, layer + 1);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
// Use the int field to indicate this node has been seen
|
||||
visitor(parent, root, connectingEdge, layer, 1);
|
||||
}
|
||||
}
|
||||
};
|
Loading…
Reference in New Issue
Block a user