52 lines
		
	
	
		
			1.7 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
		
		
			
		
	
	
			52 lines
		
	
	
		
			1.7 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
| 
								 | 
							
								// the code is taken from https://github.com/mattlockyer/iat455/blob/6493c882f1956703133c1bffa1d7ee9a83741cbe/assignment1/assignment/effects/blur-effect-dyn.js
							 | 
						||
| 
								 | 
							
								// (c) Matt Lockyer, https://github.com/mattlockyer
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								function hypotenuse(x1, y1, x2, y2) {
							 | 
						||
| 
								 | 
							
								  var xSquare = Math.pow(x1 - x2, 2);
							 | 
						||
| 
								 | 
							
								  var ySquare = Math.pow(y1 - y2, 2);
							 | 
						||
| 
								 | 
							
								  return Math.sqrt(xSquare + ySquare);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								 * Generates a kernel used for the gaussian blur effect.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * @param dimension is an odd integer
							 | 
						||
| 
								 | 
							
								 * @param sigma is the standard deviation used for our gaussian function.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * @returns an array with dimension^2 number of numbers, all less than or equal
							 | 
						||
| 
								 | 
							
								 *   to 1. Represents our gaussian blur kernel.
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								function generateGaussianKernel(dimension, sigma) {
							 | 
						||
| 
								 | 
							
								  if (!(dimension % 2) || Math.floor(dimension) !== dimension || dimension<3) {
							 | 
						||
| 
								 | 
							
								    throw new Error(
							 | 
						||
| 
								 | 
							
								      'The dimension must be an odd integer greater than or equal to 3'
							 | 
						||
| 
								 | 
							
								    );
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  var kernel = [];
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  var twoSigmaSquare = 2 * sigma * sigma;
							 | 
						||
| 
								 | 
							
								  var centre = (dimension - 1) / 2;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  for (var i = 0; i < dimension; i++) {
							 | 
						||
| 
								 | 
							
								    for (var j = 0; j < dimension; j++) {
							 | 
						||
| 
								 | 
							
								      var distance = hypotenuse(i, j, centre, centre);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								      // The following is an algorithm that came from the gaussian blur
							 | 
						||
| 
								 | 
							
								      // wikipedia page [1].
							 | 
						||
| 
								 | 
							
								      //
							 | 
						||
| 
								 | 
							
								      // http://en.wikipedia.org/w/index.php?title=Gaussian_blur&oldid=608793634#Mechanics
							 | 
						||
| 
								 | 
							
								      var gaussian = (1 / Math.sqrt(
							 | 
						||
| 
								 | 
							
								        Math.PI * twoSigmaSquare
							 | 
						||
| 
								 | 
							
								      )) * Math.exp((-1) * (Math.pow(distance, 2) / twoSigmaSquare));
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								      kernel.push(gaussian);
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // Returns the unit vector of the kernel array.
							 | 
						||
| 
								 | 
							
								  var sum = kernel.reduce(function (c, p) { return c + p; });
							 | 
						||
| 
								 | 
							
								  return kernel.map(function (e) { return e / sum; });
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								module.exports = generateGaussianKernel;
							 |