6252 lines
		
	
	
		
			208 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			6252 lines
		
	
	
		
			208 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* The next parts are all for configuring dlmalloc to work with basekernel */
 | |
| #define ENOMEM 0
 | |
| #define LACKS_TIME_H
 | |
| #define LACKS_SYS_TYPES_H
 | |
| #define MALLOC_FAILURE_ACTION
 | |
| #define LACKS_ERRNO_H
 | |
| #define LACKS_STDLIB_H
 | |
| #define LACKS_STRING_H
 | |
| #define LACKS_UNISTD_H
 | |
| #define LACKS_SYS_PARAM_H
 | |
| #define NO_MALLOC_STATS 1
 | |
| #define HAVE_MMAP 0
 | |
| #define HAVE_MMAP 0
 | |
| #define size_t unsigned int
 | |
| #define ptrdiff_t int
 | |
| #define ABORT
 | |
| #define fprintf
 | |
| #define HAVE_MMAP 0
 | |
| #define MMAP_CLEARS 0
 | |
| #define HAVE_MREMAP 0
 | |
| 
 | |
| #include "library/string.h" /* for memset etc */
 | |
| #include "kernel/error.h" /* for KERROR_INVALID_REQUEST */
 | |
| #include "library/syscalls.h" /* for sbrk, sysconf */
 | |
| 
 | |
| #define sbrk(x) syscall_process_heap(x)
 | |
| 
 | |
| /* END CUSTOM SETTINGS */
 | |
| /* Below is the unedited dlmalloc code */
 | |
| /*
 | |
|   This is a version (aka dlmalloc) of malloc/free/realloc written by
 | |
|   Doug Lea and released to the public domain, as explained at
 | |
|   http://creativecommons.org/publicdomain/zero/1.0/ Send questions,
 | |
|   comments, complaints, performance data, etc to dl@cs.oswego.edu
 | |
| 
 | |
| * Version 2.8.6 Wed Aug 29 06:57:58 2012  Doug Lea
 | |
|    Note: There may be an updated version of this malloc obtainable at
 | |
|            ftp://gee.cs.oswego.edu/pub/misc/malloc.c
 | |
|          Check before installing!
 | |
| 
 | |
| * Quickstart
 | |
| 
 | |
|   This library is all in one file to simplify the most common usage:
 | |
|   ftp it, compile it (-O3), and link it into another program. All of
 | |
|   the compile-time options default to reasonable values for use on
 | |
|   most platforms.  You might later want to step through various
 | |
|   compile-time and dynamic tuning options.
 | |
| 
 | |
|   For convenience, an include file for code using this malloc is at:
 | |
|      ftp://gee.cs.oswego.edu/pub/misc/malloc-2.8.6.h
 | |
|   You don't really need this .h file unless you call functions not
 | |
|   defined in your system include files.  The .h file contains only the
 | |
|   excerpts from this file needed for using this malloc on ANSI C/C++
 | |
|   systems, so long as you haven't changed compile-time options about
 | |
|   naming and tuning parameters.  If you do, then you can create your
 | |
|   own malloc.h that does include all settings by cutting at the point
 | |
|   indicated below. Note that you may already by default be using a C
 | |
|   library containing a malloc that is based on some version of this
 | |
|   malloc (for example in linux). You might still want to use the one
 | |
|   in this file to customize settings or to avoid overheads associated
 | |
|   with library versions.
 | |
| 
 | |
| * Vital statistics:
 | |
| 
 | |
|   Supported pointer/size_t representation:       4 or 8 bytes
 | |
|        size_t MUST be an unsigned type of the same width as
 | |
|        pointers. (If you are using an ancient system that declares
 | |
|        size_t as a signed type, or need it to be a different width
 | |
|        than pointers, you can use a previous release of this malloc
 | |
|        (e.g. 2.7.2) supporting these.)
 | |
| 
 | |
|   Alignment:                                     8 bytes (minimum)
 | |
|        This suffices for nearly all current machines and C compilers.
 | |
|        However, you can define MALLOC_ALIGNMENT to be wider than this
 | |
|        if necessary (up to 128bytes), at the expense of using more space.
 | |
| 
 | |
|   Minimum overhead per allocated chunk:   4 or  8 bytes (if 4byte sizes)
 | |
|                                           8 or 16 bytes (if 8byte sizes)
 | |
|        Each malloced chunk has a hidden word of overhead holding size
 | |
|        and status information, and additional cross-check word
 | |
|        if FOOTERS is defined.
 | |
| 
 | |
|   Minimum allocated size: 4-byte ptrs:  16 bytes    (including overhead)
 | |
|                           8-byte ptrs:  32 bytes    (including overhead)
 | |
| 
 | |
|        Even a request for zero bytes (i.e., malloc(0)) returns a
 | |
|        pointer to something of the minimum allocatable size.
 | |
|        The maximum overhead wastage (i.e., number of extra bytes
 | |
|        allocated than were requested in malloc) is less than or equal
 | |
|        to the minimum size, except for requests >= mmap_threshold that
 | |
|        are serviced via mmap(), where the worst case wastage is about
 | |
|        32 bytes plus the remainder from a system page (the minimal
 | |
|        mmap unit); typically 4096 or 8192 bytes.
 | |
| 
 | |
|   Security: static-safe; optionally more or less
 | |
|        The "security" of malloc refers to the ability of malicious
 | |
|        code to accentuate the effects of errors (for example, freeing
 | |
|        space that is not currently malloc'ed or overwriting past the
 | |
|        ends of chunks) in code that calls malloc.  This malloc
 | |
|        guarantees not to modify any memory locations below the base of
 | |
|        heap, i.e., static variables, even in the presence of usage
 | |
|        errors.  The routines additionally detect most improper frees
 | |
|        and reallocs.  All this holds as long as the static bookkeeping
 | |
|        for malloc itself is not corrupted by some other means.  This
 | |
|        is only one aspect of security -- these checks do not, and
 | |
|        cannot, detect all possible programming errors.
 | |
| 
 | |
|        If FOOTERS is defined nonzero, then each allocated chunk
 | |
|        carries an additional check word to verify that it was malloced
 | |
|        from its space.  These check words are the same within each
 | |
|        execution of a program using malloc, but differ across
 | |
|        executions, so externally crafted fake chunks cannot be
 | |
|        freed. This improves security by rejecting frees/reallocs that
 | |
|        could corrupt heap memory, in addition to the checks preventing
 | |
|        writes to statics that are always on.  This may further improve
 | |
|        security at the expense of time and space overhead.  (Note that
 | |
|        FOOTERS may also be worth using with MSPACES.)
 | |
| 
 | |
|        By default detected errors cause the program to abort (calling
 | |
|        "abort()"). You can override this to instead proceed past
 | |
|        errors by defining PROCEED_ON_ERROR.  In this case, a bad free
 | |
|        has no effect, and a malloc that encounters a bad address
 | |
|        caused by user overwrites will ignore the bad address by
 | |
|        dropping pointers and indices to all known memory. This may
 | |
|        be appropriate for programs that should continue if at all
 | |
|        possible in the face of programming errors, although they may
 | |
|        run out of memory because dropped memory is never reclaimed.
 | |
| 
 | |
|        If you don't like either of these options, you can define
 | |
|        CORRUPTION_ERROR_ACTION and USAGE_ERROR_ACTION to do anything
 | |
|        else. And if if you are sure that your program using malloc has
 | |
|        no errors or vulnerabilities, you can define INSECURE to 1,
 | |
|        which might (or might not) provide a small performance improvement.
 | |
| 
 | |
|        It is also possible to limit the maximum total allocatable
 | |
|        space, using malloc_set_footprint_limit. This is not
 | |
|        designed as a security feature in itself (calls to set limits
 | |
|        are not screened or privileged), but may be useful as one
 | |
|        aspect of a secure implementation.
 | |
| 
 | |
|   Thread-safety: NOT thread-safe unless USE_LOCKS defined non-zero
 | |
|        When USE_LOCKS is defined, each public call to malloc, free,
 | |
|        etc is surrounded with a lock. By default, this uses a plain
 | |
|        pthread mutex, win32 critical section, or a spin-lock if if
 | |
|        available for the platform and not disabled by setting
 | |
|        USE_SPIN_LOCKS=0.  However, if USE_RECURSIVE_LOCKS is defined,
 | |
|        recursive versions are used instead (which are not required for
 | |
|        base functionality but may be needed in layered extensions).
 | |
|        Using a global lock is not especially fast, and can be a major
 | |
|        bottleneck.  It is designed only to provide minimal protection
 | |
|        in concurrent environments, and to provide a basis for
 | |
|        extensions.  If you are using malloc in a concurrent program,
 | |
|        consider instead using nedmalloc
 | |
|        (http://www.nedprod.com/programs/portable/nedmalloc/) or
 | |
|        ptmalloc (See http://www.malloc.de), which are derived from
 | |
|        versions of this malloc.
 | |
| 
 | |
|   System requirements: Any combination of MORECORE and/or MMAP/MUNMAP
 | |
|        This malloc can use unix sbrk or any emulation (invoked using
 | |
|        the CALL_MORECORE macro) and/or mmap/munmap or any emulation
 | |
|        (invoked using CALL_MMAP/CALL_MUNMAP) to get and release system
 | |
|        memory.  On most unix systems, it tends to work best if both
 | |
|        MORECORE and MMAP are enabled.  On Win32, it uses emulations
 | |
|        based on VirtualAlloc. It also uses common C library functions
 | |
|        like memset.
 | |
| 
 | |
|   Compliance: I believe it is compliant with the Single Unix Specification
 | |
|        (See http://www.unix.org). Also SVID/XPG, ANSI C, and probably
 | |
|        others as well.
 | |
| 
 | |
| * Overview of algorithms
 | |
| 
 | |
|   This is not the fastest, most space-conserving, most portable, or
 | |
|   most tunable malloc ever written. However it is among the fastest
 | |
|   while also being among the most space-conserving, portable and
 | |
|   tunable.  Consistent balance across these factors results in a good
 | |
|   general-purpose allocator for malloc-intensive programs.
 | |
| 
 | |
|   In most ways, this malloc is a best-fit allocator. Generally, it
 | |
|   chooses the best-fitting existing chunk for a request, with ties
 | |
|   broken in approximately least-recently-used order. (This strategy
 | |
|   normally maintains low fragmentation.) However, for requests less
 | |
|   than 256bytes, it deviates from best-fit when there is not an
 | |
|   exactly fitting available chunk by preferring to use space adjacent
 | |
|   to that used for the previous small request, as well as by breaking
 | |
|   ties in approximately most-recently-used order. (These enhance
 | |
|   locality of series of small allocations.)  And for very large requests
 | |
|   (>= 256Kb by default), it relies on system memory mapping
 | |
|   facilities, if supported.  (This helps avoid carrying around and
 | |
|   possibly fragmenting memory used only for large chunks.)
 | |
| 
 | |
|   All operations (except malloc_stats and mallinfo) have execution
 | |
|   times that are bounded by a constant factor of the number of bits in
 | |
|   a size_t, not counting any clearing in calloc or copying in realloc,
 | |
|   or actions surrounding MORECORE and MMAP that have times
 | |
|   proportional to the number of non-contiguous regions returned by
 | |
|   system allocation routines, which is often just 1. In real-time
 | |
|   applications, you can optionally suppress segment traversals using
 | |
|   NO_SEGMENT_TRAVERSAL, which assures bounded execution even when
 | |
|   system allocators return non-contiguous spaces, at the typical
 | |
|   expense of carrying around more memory and increased fragmentation.
 | |
| 
 | |
|   The implementation is not very modular and seriously overuses
 | |
|   macros. Perhaps someday all C compilers will do as good a job
 | |
|   inlining modular code as can now be done by brute-force expansion,
 | |
|   but now, enough of them seem not to.
 | |
| 
 | |
|   Some compilers issue a lot of warnings about code that is
 | |
|   dead/unreachable only on some platforms, and also about intentional
 | |
|   uses of negation on unsigned types. All known cases of each can be
 | |
|   ignored.
 | |
| 
 | |
|   For a longer but out of date high-level description, see
 | |
|      http://gee.cs.oswego.edu/dl/html/malloc.html
 | |
| 
 | |
| * MSPACES
 | |
|   If MSPACES is defined, then in addition to malloc, free, etc.,
 | |
|   this file also defines mspace_malloc, mspace_free, etc. These
 | |
|   are versions of malloc routines that take an "mspace" argument
 | |
|   obtained using create_mspace, to control all internal bookkeeping.
 | |
|   If ONLY_MSPACES is defined, only these versions are compiled.
 | |
|   So if you would like to use this allocator for only some allocations,
 | |
|   and your system malloc for others, you can compile with
 | |
|   ONLY_MSPACES and then do something like...
 | |
|     static mspace mymspace = create_mspace(0,0); // for example
 | |
|     #define mymalloc(bytes)  mspace_malloc(mymspace, bytes)
 | |
| 
 | |
|   (Note: If you only need one instance of an mspace, you can instead
 | |
|   use "USE_DL_PREFIX" to relabel the global malloc.)
 | |
| 
 | |
|   You can similarly create thread-local allocators by storing
 | |
|   mspaces as thread-locals. For example:
 | |
|     static __thread mspace tlms = 0;
 | |
|     void*  tlmalloc(size_t bytes) {
 | |
|       if (tlms == 0) tlms = create_mspace(0, 0);
 | |
|       return mspace_malloc(tlms, bytes);
 | |
|     }
 | |
|     void  tlfree(void* mem) { mspace_free(tlms, mem); }
 | |
| 
 | |
|   Unless FOOTERS is defined, each mspace is completely independent.
 | |
|   You cannot allocate from one and free to another (although
 | |
|   conformance is only weakly checked, so usage errors are not always
 | |
|   caught). If FOOTERS is defined, then each chunk carries around a tag
 | |
|   indicating its originating mspace, and frees are directed to their
 | |
|   originating spaces. Normally, this requires use of locks.
 | |
| 
 | |
|  -------------------------  Compile-time options ---------------------------
 | |
| 
 | |
| Be careful in setting #define values for numerical constants of type
 | |
| size_t. On some systems, literal values are not automatically extended
 | |
| to size_t precision unless they are explicitly casted. You can also
 | |
| use the symbolic values MAX_SIZE_T, SIZE_T_ONE, etc below.
 | |
| 
 | |
| WIN32                    default: defined if _WIN32 defined
 | |
|   Defining WIN32 sets up defaults for MS environment and compilers.
 | |
|   Otherwise defaults are for unix. Beware that there seem to be some
 | |
|   cases where this malloc might not be a pure drop-in replacement for
 | |
|   Win32 malloc: Random-looking failures from Win32 GDI API's (eg;
 | |
|   SetDIBits()) may be due to bugs in some video driver implementations
 | |
|   when pixel buffers are malloc()ed, and the region spans more than
 | |
|   one VirtualAlloc()ed region. Because dlmalloc uses a small (64Kb)
 | |
|   default granularity, pixel buffers may straddle virtual allocation
 | |
|   regions more often than when using the Microsoft allocator.  You can
 | |
|   avoid this by using VirtualAlloc() and VirtualFree() for all pixel
 | |
|   buffers rather than using malloc().  If this is not possible,
 | |
|   recompile this malloc with a larger DEFAULT_GRANULARITY. Note:
 | |
|   in cases where MSC and gcc (cygwin) are known to differ on WIN32,
 | |
|   conditions use _MSC_VER to distinguish them.
 | |
| 
 | |
| DLMALLOC_EXPORT       default: extern
 | |
|   Defines how public APIs are declared. If you want to export via a
 | |
|   Windows DLL, you might define this as
 | |
|     #define DLMALLOC_EXPORT extern  __declspec(dllexport)
 | |
|   If you want a POSIX ELF shared object, you might use
 | |
|     #define DLMALLOC_EXPORT extern __attribute__((visibility("default")))
 | |
| 
 | |
| MALLOC_ALIGNMENT         default: (size_t)(2 * sizeof(void *))
 | |
|   Controls the minimum alignment for malloc'ed chunks.  It must be a
 | |
|   power of two and at least 8, even on machines for which smaller
 | |
|   alignments would suffice. It may be defined as larger than this
 | |
|   though. Note however that code and data structures are optimized for
 | |
|   the case of 8-byte alignment.
 | |
| 
 | |
| MSPACES                  default: 0 (false)
 | |
|   If true, compile in support for independent allocation spaces.
 | |
|   This is only supported if HAVE_MMAP is true.
 | |
| 
 | |
| ONLY_MSPACES             default: 0 (false)
 | |
|   If true, only compile in mspace versions, not regular versions.
 | |
| 
 | |
| USE_LOCKS                default: 0 (false)
 | |
|   Causes each call to each public routine to be surrounded with
 | |
|   pthread or WIN32 mutex lock/unlock. (If set true, this can be
 | |
|   overridden on a per-mspace basis for mspace versions.) If set to a
 | |
|   non-zero value other than 1, locks are used, but their
 | |
|   implementation is left out, so lock functions must be supplied manually,
 | |
|   as described below.
 | |
| 
 | |
| USE_SPIN_LOCKS           default: 1 iff USE_LOCKS and spin locks available
 | |
|   If true, uses custom spin locks for locking. This is currently
 | |
|   supported only gcc >= 4.1, older gccs on x86 platforms, and recent
 | |
|   MS compilers.  Otherwise, posix locks or win32 critical sections are
 | |
|   used.
 | |
| 
 | |
| USE_RECURSIVE_LOCKS      default: not defined
 | |
|   If defined nonzero, uses recursive (aka reentrant) locks, otherwise
 | |
|   uses plain mutexes. This is not required for malloc proper, but may
 | |
|   be needed for layered allocators such as nedmalloc.
 | |
| 
 | |
| LOCK_AT_FORK            default: not defined
 | |
|   If defined nonzero, performs pthread_atfork upon initialization
 | |
|   to initialize child lock while holding parent lock. The implementation
 | |
|   assumes that pthread locks (not custom locks) are being used. In other
 | |
|   cases, you may need to customize the implementation.
 | |
| 
 | |
| FOOTERS                  default: 0
 | |
|   If true, provide extra checking and dispatching by placing
 | |
|   information in the footers of allocated chunks. This adds
 | |
|   space and time overhead.
 | |
| 
 | |
| INSECURE                 default: 0
 | |
|   If true, omit checks for usage errors and heap space overwrites.
 | |
| 
 | |
| USE_DL_PREFIX            default: NOT defined
 | |
|   Causes compiler to prefix all public routines with the string 'dl'.
 | |
|   This can be useful when you only want to use this malloc in one part
 | |
|   of a program, using your regular system malloc elsewhere.
 | |
| 
 | |
| MALLOC_INSPECT_ALL       default: NOT defined
 | |
|   If defined, compiles malloc_inspect_all and mspace_inspect_all, that
 | |
|   perform traversal of all heap space.  Unless access to these
 | |
|   functions is otherwise restricted, you probably do not want to
 | |
|   include them in secure implementations.
 | |
| 
 | |
| ABORT                    default: defined as abort()
 | |
|   Defines how to abort on failed checks.  On most systems, a failed
 | |
|   check cannot die with an "assert" or even print an informative
 | |
|   message, because the underlying print routines in turn call malloc,
 | |
|   which will fail again.  Generally, the best policy is to simply call
 | |
|   abort(). It's not very useful to do more than this because many
 | |
|   errors due to overwriting will show up as address faults (null, odd
 | |
|   addresses etc) rather than malloc-triggered checks, so will also
 | |
|   abort.  Also, most compilers know that abort() does not return, so
 | |
|   can better optimize code conditionally calling it.
 | |
| 
 | |
| PROCEED_ON_ERROR           default: defined as 0 (false)
 | |
|   Controls whether detected bad addresses cause them to bypassed
 | |
|   rather than aborting. If set, detected bad arguments to free and
 | |
|   realloc are ignored. And all bookkeeping information is zeroed out
 | |
|   upon a detected overwrite of freed heap space, thus losing the
 | |
|   ability to ever return it from malloc again, but enabling the
 | |
|   application to proceed. If PROCEED_ON_ERROR is defined, the
 | |
|   static variable malloc_corruption_error_count is compiled in
 | |
|   and can be examined to see if errors have occurred. This option
 | |
|   generates slower code than the default abort policy.
 | |
| 
 | |
| DEBUG                    default: NOT defined
 | |
|   The DEBUG setting is mainly intended for people trying to modify
 | |
|   this code or diagnose problems when porting to new platforms.
 | |
|   However, it may also be able to better isolate user errors than just
 | |
|   using runtime checks.  The assertions in the check routines spell
 | |
|   out in more detail the assumptions and invariants underlying the
 | |
|   algorithms.  The checking is fairly extensive, and will slow down
 | |
|   execution noticeably. Calling malloc_stats or mallinfo with DEBUG
 | |
|   set will attempt to check every non-mmapped allocated and free chunk
 | |
|   in the course of computing the summaries.
 | |
| 
 | |
| ABORT_ON_ASSERT_FAILURE   default: defined as 1 (true)
 | |
|   Debugging assertion failures can be nearly impossible if your
 | |
|   version of the assert macro causes malloc to be called, which will
 | |
|   lead to a cascade of further failures, blowing the runtime stack.
 | |
|   ABORT_ON_ASSERT_FAILURE cause assertions failures to call abort(),
 | |
|   which will usually make debugging easier.
 | |
| 
 | |
| MALLOC_FAILURE_ACTION     default: sets errno to ENOMEM, or no-op on win32
 | |
|   The action to take before "return 0" when malloc fails to be able to
 | |
|   return memory because there is none available.
 | |
| 
 | |
| HAVE_MORECORE             default: 1 (true) unless win32 or ONLY_MSPACES
 | |
|   True if this system supports sbrk or an emulation of it.
 | |
| 
 | |
| MORECORE                  default: sbrk
 | |
|   The name of the sbrk-style system routine to call to obtain more
 | |
|   memory.  See below for guidance on writing custom MORECORE
 | |
|   functions. The type of the argument to sbrk/MORECORE varies across
 | |
|   systems.  It cannot be size_t, because it supports negative
 | |
|   arguments, so it is normally the signed type of the same width as
 | |
|   size_t (sometimes declared as "intptr_t").  It doesn't much matter
 | |
|   though. Internally, we only call it with arguments less than half
 | |
|   the max value of a size_t, which should work across all reasonable
 | |
|   possibilities, although sometimes generating compiler warnings.
 | |
| 
 | |
| MORECORE_CONTIGUOUS       default: 1 (true) if HAVE_MORECORE
 | |
|   If true, take advantage of fact that consecutive calls to MORECORE
 | |
|   with positive arguments always return contiguous increasing
 | |
|   addresses.  This is true of unix sbrk. It does not hurt too much to
 | |
|   set it true anyway, since malloc copes with non-contiguities.
 | |
|   Setting it false when definitely non-contiguous saves time
 | |
|   and possibly wasted space it would take to discover this though.
 | |
| 
 | |
| MORECORE_CANNOT_TRIM      default: NOT defined
 | |
|   True if MORECORE cannot release space back to the system when given
 | |
|   negative arguments. This is generally necessary only if you are
 | |
|   using a hand-crafted MORECORE function that cannot handle negative
 | |
|   arguments.
 | |
| 
 | |
| NO_SEGMENT_TRAVERSAL       default: 0
 | |
|   If non-zero, suppresses traversals of memory segments
 | |
|   returned by either MORECORE or CALL_MMAP. This disables
 | |
|   merging of segments that are contiguous, and selectively
 | |
|   releasing them to the OS if unused, but bounds execution times.
 | |
| 
 | |
| HAVE_MMAP                 default: 1 (true)
 | |
|   True if this system supports mmap or an emulation of it.  If so, and
 | |
|   HAVE_MORECORE is not true, MMAP is used for all system
 | |
|   allocation. If set and HAVE_MORECORE is true as well, MMAP is
 | |
|   primarily used to directly allocate very large blocks. It is also
 | |
|   used as a backup strategy in cases where MORECORE fails to provide
 | |
|   space from system. Note: A single call to MUNMAP is assumed to be
 | |
|   able to unmap memory that may have be allocated using multiple calls
 | |
|   to MMAP, so long as they are adjacent.
 | |
| 
 | |
| HAVE_MREMAP               default: 1 on linux, else 0
 | |
|   If true realloc() uses mremap() to re-allocate large blocks and
 | |
|   extend or shrink allocation spaces.
 | |
| 
 | |
| MMAP_CLEARS               default: 1 except on WINCE.
 | |
|   True if mmap clears memory so calloc doesn't need to. This is true
 | |
|   for standard unix mmap using /dev/zero and on WIN32 except for WINCE.
 | |
| 
 | |
| USE_BUILTIN_FFS            default: 0 (i.e., not used)
 | |
|   Causes malloc to use the builtin ffs() function to compute indices.
 | |
|   Some compilers may recognize and intrinsify ffs to be faster than the
 | |
|   supplied C version. Also, the case of x86 using gcc is special-cased
 | |
|   to an asm instruction, so is already as fast as it can be, and so
 | |
|   this setting has no effect. Similarly for Win32 under recent MS compilers.
 | |
|   (On most x86s, the asm version is only slightly faster than the C version.)
 | |
| 
 | |
| malloc_getpagesize         default: derive from system includes, or 4096.
 | |
|   The system page size. To the extent possible, this malloc manages
 | |
|   memory from the system in page-size units.  This may be (and
 | |
|   usually is) a function rather than a constant. This is ignored
 | |
|   if WIN32, where page size is determined using getSystemInfo during
 | |
|   initialization.
 | |
| 
 | |
| USE_DEV_RANDOM             default: 0 (i.e., not used)
 | |
|   Causes malloc to use /dev/random to initialize secure magic seed for
 | |
|   stamping footers. Otherwise, the current time is used.
 | |
| 
 | |
| NO_MALLINFO                default: 0
 | |
|   If defined, don't compile "mallinfo". This can be a simple way
 | |
|   of dealing with mismatches between system declarations and
 | |
|   those in this file.
 | |
| 
 | |
| MALLINFO_FIELD_TYPE        default: size_t
 | |
|   The type of the fields in the mallinfo struct. This was originally
 | |
|   defined as "int" in SVID etc, but is more usefully defined as
 | |
|   size_t. The value is used only if  HAVE_USR_INCLUDE_MALLOC_H is not set
 | |
| 
 | |
| NO_MALLOC_STATS            default: 0
 | |
|   If defined, don't compile "malloc_stats". This avoids calls to
 | |
|   fprintf and bringing in stdio dependencies you might not want.
 | |
| 
 | |
| REALLOC_ZERO_BYTES_FREES    default: not defined
 | |
|   This should be set if a call to realloc with zero bytes should
 | |
|   be the same as a call to free. Some people think it should. Otherwise,
 | |
|   since this malloc returns a unique pointer for malloc(0), so does
 | |
|   realloc(p, 0).
 | |
| 
 | |
| LACKS_UNISTD_H, LACKS_FCNTL_H, LACKS_SYS_PARAM_H, LACKS_SYS_MMAN_H
 | |
| LACKS_STRINGS_H, LACKS_STRING_H, LACKS_SYS_TYPES_H,  LACKS_ERRNO_H
 | |
| LACKS_STDLIB_H LACKS_SCHED_H LACKS_TIME_H  default: NOT defined unless on WIN32
 | |
|   Define these if your system does not have these header files.
 | |
|   You might need to manually insert some of the declarations they provide.
 | |
| 
 | |
| DEFAULT_GRANULARITY        default: page size if MORECORE_CONTIGUOUS,
 | |
|                                 system_info.dwAllocationGranularity in WIN32,
 | |
|                                 otherwise 64K.
 | |
|       Also settable using mallopt(M_GRANULARITY, x)
 | |
|   The unit for allocating and deallocating memory from the system.  On
 | |
|   most systems with contiguous MORECORE, there is no reason to
 | |
|   make this more than a page. However, systems with MMAP tend to
 | |
|   either require or encourage larger granularities.  You can increase
 | |
|   this value to prevent system allocation functions to be called so
 | |
|   often, especially if they are slow.  The value must be at least one
 | |
|   page and must be a power of two.  Setting to 0 causes initialization
 | |
|   to either page size or win32 region size.  (Note: In previous
 | |
|   versions of malloc, the equivalent of this option was called
 | |
|   "TOP_PAD")
 | |
| 
 | |
| DEFAULT_TRIM_THRESHOLD    default: 2MB
 | |
|       Also settable using mallopt(M_TRIM_THRESHOLD, x)
 | |
|   The maximum amount of unused top-most memory to keep before
 | |
|   releasing via malloc_trim in free().  Automatic trimming is mainly
 | |
|   useful in long-lived programs using contiguous MORECORE.  Because
 | |
|   trimming via sbrk can be slow on some systems, and can sometimes be
 | |
|   wasteful (in cases where programs immediately afterward allocate
 | |
|   more large chunks) the value should be high enough so that your
 | |
|   overall system performance would improve by releasing this much
 | |
|   memory.  As a rough guide, you might set to a value close to the
 | |
|   average size of a process (program) running on your system.
 | |
|   Releasing this much memory would allow such a process to run in
 | |
|   memory.  Generally, it is worth tuning trim thresholds when a
 | |
|   program undergoes phases where several large chunks are allocated
 | |
|   and released in ways that can reuse each other's storage, perhaps
 | |
|   mixed with phases where there are no such chunks at all. The trim
 | |
|   value must be greater than page size to have any useful effect.  To
 | |
|   disable trimming completely, you can set to MAX_SIZE_T. Note that the trick
 | |
|   some people use of mallocing a huge space and then freeing it at
 | |
|   program startup, in an attempt to reserve system memory, doesn't
 | |
|   have the intended effect under automatic trimming, since that memory
 | |
|   will immediately be returned to the system.
 | |
| 
 | |
| DEFAULT_MMAP_THRESHOLD       default: 256K
 | |
|       Also settable using mallopt(M_MMAP_THRESHOLD, x)
 | |
|   The request size threshold for using MMAP to directly service a
 | |
|   request. Requests of at least this size that cannot be allocated
 | |
|   using already-existing space will be serviced via mmap.  (If enough
 | |
|   normal freed space already exists it is used instead.)  Using mmap
 | |
|   segregates relatively large chunks of memory so that they can be
 | |
|   individually obtained and released from the host system. A request
 | |
|   serviced through mmap is never reused by any other request (at least
 | |
|   not directly; the system may just so happen to remap successive
 | |
|   requests to the same locations).  Segregating space in this way has
 | |
|   the benefits that: Mmapped space can always be individually released
 | |
|   back to the system, which helps keep the system level memory demands
 | |
|   of a long-lived program low.  Also, mapped memory doesn't become
 | |
|   `locked' between other chunks, as can happen with normally allocated
 | |
|   chunks, which means that even trimming via malloc_trim would not
 | |
|   release them.  However, it has the disadvantage that the space
 | |
|   cannot be reclaimed, consolidated, and then used to service later
 | |
|   requests, as happens with normal chunks.  The advantages of mmap
 | |
|   nearly always outweigh disadvantages for "large" chunks, but the
 | |
|   value of "large" may vary across systems.  The default is an
 | |
|   empirically derived value that works well in most systems. You can
 | |
|   disable mmap by setting to MAX_SIZE_T.
 | |
| 
 | |
| MAX_RELEASE_CHECK_RATE   default: 4095 unless not HAVE_MMAP
 | |
|   The number of consolidated frees between checks to release
 | |
|   unused segments when freeing. When using non-contiguous segments,
 | |
|   especially with multiple mspaces, checking only for topmost space
 | |
|   doesn't always suffice to trigger trimming. To compensate for this,
 | |
|   free() will, with a period of MAX_RELEASE_CHECK_RATE (or the
 | |
|   current number of segments, if greater) try to release unused
 | |
|   segments to the OS when freeing chunks that result in
 | |
|   consolidation. The best value for this parameter is a compromise
 | |
|   between slowing down frees with relatively costly checks that
 | |
|   rarely trigger versus holding on to unused memory. To effectively
 | |
|   disable, set to MAX_SIZE_T. This may lead to a very slight speed
 | |
|   improvement at the expense of carrying around more memory.
 | |
| */
 | |
| 
 | |
| /* Version identifier to allow people to support multiple versions */
 | |
| #ifndef DLMALLOC_VERSION
 | |
| #define DLMALLOC_VERSION 20806
 | |
| #endif /* DLMALLOC_VERSION */
 | |
| 
 | |
| #ifndef DLMALLOC_EXPORT
 | |
| #define DLMALLOC_EXPORT extern
 | |
| #endif
 | |
| 
 | |
| #ifndef WIN32
 | |
| #ifdef _WIN32
 | |
| #define WIN32 1
 | |
| #endif /* _WIN32 */
 | |
| #ifdef _WIN32_WCE
 | |
| #define LACKS_FCNTL_H
 | |
| #define WIN32 1
 | |
| #endif /* _WIN32_WCE */
 | |
| #endif /* WIN32 */
 | |
| #ifdef WIN32
 | |
| #define WIN32_LEAN_AND_MEAN
 | |
| #include <windows.h>
 | |
| #include <tchar.h>
 | |
| #define HAVE_MMAP 1
 | |
| #define HAVE_MORECORE 0
 | |
| #define LACKS_UNISTD_H
 | |
| #define LACKS_SYS_PARAM_H
 | |
| #define LACKS_SYS_MMAN_H
 | |
| #define LACKS_STRING_H
 | |
| #define LACKS_STRINGS_H
 | |
| #define LACKS_SYS_TYPES_H
 | |
| #define LACKS_ERRNO_H
 | |
| #define LACKS_SCHED_H
 | |
| #ifndef MALLOC_FAILURE_ACTION
 | |
| #define MALLOC_FAILURE_ACTION
 | |
| #endif /* MALLOC_FAILURE_ACTION */
 | |
| #ifndef MMAP_CLEARS
 | |
| #ifdef _WIN32_WCE		/* WINCE reportedly does not clear */
 | |
| #define MMAP_CLEARS 0
 | |
| #else
 | |
| #define MMAP_CLEARS 1
 | |
| #endif /* _WIN32_WCE */
 | |
| #endif /*MMAP_CLEARS */
 | |
| #endif /* WIN32 */
 | |
| 
 | |
| #if defined(DARWIN) || defined(_DARWIN)
 | |
| /* Mac OSX docs advise not to use sbrk; it seems better to use mmap */
 | |
| #ifndef HAVE_MORECORE
 | |
| #define HAVE_MORECORE 0
 | |
| #define HAVE_MMAP 1
 | |
| /* OSX allocators provide 16 byte alignment */
 | |
| #ifndef MALLOC_ALIGNMENT
 | |
| #define MALLOC_ALIGNMENT ((size_t)16U)
 | |
| #endif
 | |
| #endif /* HAVE_MORECORE */
 | |
| #endif /* DARWIN */
 | |
| 
 | |
| #ifndef LACKS_SYS_TYPES_H
 | |
| #include <sys/types.h>		/* For size_t */
 | |
| #endif /* LACKS_SYS_TYPES_H */
 | |
| 
 | |
| /* The maximum possible size_t value has all bits set */
 | |
| #define MAX_SIZE_T           (~(size_t)0)
 | |
| 
 | |
| #ifndef USE_LOCKS		/* ensure true if spin or recursive locks set */
 | |
| #define USE_LOCKS  ((defined(USE_SPIN_LOCKS) && USE_SPIN_LOCKS != 0) || \
 | |
|                     (defined(USE_RECURSIVE_LOCKS) && USE_RECURSIVE_LOCKS != 0))
 | |
| #endif /* USE_LOCKS */
 | |
| 
 | |
| #if USE_LOCKS			/* Spin locks for gcc >= 4.1, older gcc on x86, MSC >= 1310 */
 | |
| #if ((defined(__GNUC__) &&                                              \
 | |
|       ((__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 1)) ||      \
 | |
|        defined(__i386__) || defined(__x86_64__))) ||                    \
 | |
|      (defined(_MSC_VER) && _MSC_VER>=1310))
 | |
| #ifndef USE_SPIN_LOCKS
 | |
| #define USE_SPIN_LOCKS 1
 | |
| #endif /* USE_SPIN_LOCKS */
 | |
| #elif USE_SPIN_LOCKS
 | |
| #error "USE_SPIN_LOCKS defined without implementation"
 | |
| #endif /* ... locks available... */
 | |
| #elif !defined(USE_SPIN_LOCKS)
 | |
| #define USE_SPIN_LOCKS 0
 | |
| #endif /* USE_LOCKS */
 | |
| 
 | |
| #ifndef ONLY_MSPACES
 | |
| #define ONLY_MSPACES 0
 | |
| #endif /* ONLY_MSPACES */
 | |
| #ifndef MSPACES
 | |
| #if ONLY_MSPACES
 | |
| #define MSPACES 1
 | |
| #else /* ONLY_MSPACES */
 | |
| #define MSPACES 0
 | |
| #endif /* ONLY_MSPACES */
 | |
| #endif /* MSPACES */
 | |
| #ifndef MALLOC_ALIGNMENT
 | |
| #define MALLOC_ALIGNMENT ((size_t)(2 * sizeof(void *)))
 | |
| #endif /* MALLOC_ALIGNMENT */
 | |
| #ifndef FOOTERS
 | |
| #define FOOTERS 0
 | |
| #endif /* FOOTERS */
 | |
| #ifndef ABORT
 | |
| #define ABORT  abort()
 | |
| #endif /* ABORT */
 | |
| #ifndef ABORT_ON_ASSERT_FAILURE
 | |
| #define ABORT_ON_ASSERT_FAILURE 1
 | |
| #endif /* ABORT_ON_ASSERT_FAILURE */
 | |
| #ifndef PROCEED_ON_ERROR
 | |
| #define PROCEED_ON_ERROR 0
 | |
| #endif /* PROCEED_ON_ERROR */
 | |
| 
 | |
| #ifndef INSECURE
 | |
| #define INSECURE 0
 | |
| #endif /* INSECURE */
 | |
| #ifndef MALLOC_INSPECT_ALL
 | |
| #define MALLOC_INSPECT_ALL 0
 | |
| #endif /* MALLOC_INSPECT_ALL */
 | |
| #ifndef HAVE_MMAP
 | |
| #define HAVE_MMAP 1
 | |
| #endif /* HAVE_MMAP */
 | |
| #ifndef MMAP_CLEARS
 | |
| #define MMAP_CLEARS 1
 | |
| #endif /* MMAP_CLEARS */
 | |
| #ifndef HAVE_MREMAP
 | |
| #ifdef linux
 | |
| #define HAVE_MREMAP 1
 | |
| #define _GNU_SOURCE		/* Turns on mremap() definition */
 | |
| #else /* linux */
 | |
| #define HAVE_MREMAP 0
 | |
| #endif /* linux */
 | |
| #endif /* HAVE_MREMAP */
 | |
| #ifndef MALLOC_FAILURE_ACTION
 | |
| #define MALLOC_FAILURE_ACTION  errno = ENOMEM;
 | |
| #endif /* MALLOC_FAILURE_ACTION */
 | |
| #ifndef HAVE_MORECORE
 | |
| #if ONLY_MSPACES
 | |
| #define HAVE_MORECORE 0
 | |
| #else /* ONLY_MSPACES */
 | |
| #define HAVE_MORECORE 1
 | |
| #endif /* ONLY_MSPACES */
 | |
| #endif /* HAVE_MORECORE */
 | |
| #if !HAVE_MORECORE
 | |
| #define MORECORE_CONTIGUOUS 0
 | |
| #else /* !HAVE_MORECORE */
 | |
| #define MORECORE_DEFAULT sbrk
 | |
| #ifndef MORECORE_CONTIGUOUS
 | |
| #define MORECORE_CONTIGUOUS 1
 | |
| #endif /* MORECORE_CONTIGUOUS */
 | |
| #endif /* HAVE_MORECORE */
 | |
| #ifndef DEFAULT_GRANULARITY
 | |
| #if (MORECORE_CONTIGUOUS || defined(WIN32))
 | |
| #define DEFAULT_GRANULARITY (0)	/* 0 means to compute in init_mparams */
 | |
| #else /* MORECORE_CONTIGUOUS */
 | |
| #define DEFAULT_GRANULARITY ((size_t)64U * (size_t)1024U)
 | |
| #endif /* MORECORE_CONTIGUOUS */
 | |
| #endif /* DEFAULT_GRANULARITY */
 | |
| #ifndef DEFAULT_TRIM_THRESHOLD
 | |
| #ifndef MORECORE_CANNOT_TRIM
 | |
| #define DEFAULT_TRIM_THRESHOLD ((size_t)2U * (size_t)1024U * (size_t)1024U)
 | |
| #else /* MORECORE_CANNOT_TRIM */
 | |
| #define DEFAULT_TRIM_THRESHOLD MAX_SIZE_T
 | |
| #endif /* MORECORE_CANNOT_TRIM */
 | |
| #endif /* DEFAULT_TRIM_THRESHOLD */
 | |
| #ifndef DEFAULT_MMAP_THRESHOLD
 | |
| #if HAVE_MMAP
 | |
| #define DEFAULT_MMAP_THRESHOLD ((size_t)256U * (size_t)1024U)
 | |
| #else /* HAVE_MMAP */
 | |
| #define DEFAULT_MMAP_THRESHOLD MAX_SIZE_T
 | |
| #endif /* HAVE_MMAP */
 | |
| #endif /* DEFAULT_MMAP_THRESHOLD */
 | |
| #ifndef MAX_RELEASE_CHECK_RATE
 | |
| #if HAVE_MMAP
 | |
| #define MAX_RELEASE_CHECK_RATE 4095
 | |
| #else
 | |
| #define MAX_RELEASE_CHECK_RATE MAX_SIZE_T
 | |
| #endif /* HAVE_MMAP */
 | |
| #endif /* MAX_RELEASE_CHECK_RATE */
 | |
| #ifndef USE_BUILTIN_FFS
 | |
| #define USE_BUILTIN_FFS 0
 | |
| #endif /* USE_BUILTIN_FFS */
 | |
| #ifndef USE_DEV_RANDOM
 | |
| #define USE_DEV_RANDOM 0
 | |
| #endif /* USE_DEV_RANDOM */
 | |
| #ifndef NO_MALLINFO
 | |
| #define NO_MALLINFO 0
 | |
| #endif /* NO_MALLINFO */
 | |
| #ifndef MALLINFO_FIELD_TYPE
 | |
| #define MALLINFO_FIELD_TYPE size_t
 | |
| #endif /* MALLINFO_FIELD_TYPE */
 | |
| #ifndef NO_MALLOC_STATS
 | |
| #define NO_MALLOC_STATS 0
 | |
| #endif /* NO_MALLOC_STATS */
 | |
| #ifndef NO_SEGMENT_TRAVERSAL
 | |
| #define NO_SEGMENT_TRAVERSAL 0
 | |
| #endif /* NO_SEGMENT_TRAVERSAL */
 | |
| 
 | |
| /*
 | |
|   mallopt tuning options.  SVID/XPG defines four standard parameter
 | |
|   numbers for mallopt, normally defined in malloc.h.  None of these
 | |
|   are used in this malloc, so setting them has no effect. But this
 | |
|   malloc does support the following options.
 | |
| */
 | |
| 
 | |
| #define M_TRIM_THRESHOLD     (-1)
 | |
| #define M_GRANULARITY        (-2)
 | |
| #define M_MMAP_THRESHOLD     (-3)
 | |
| 
 | |
| /* ------------------------ Mallinfo declarations ------------------------ */
 | |
| 
 | |
| #if !NO_MALLINFO
 | |
| /*
 | |
|   This version of malloc supports the standard SVID/XPG mallinfo
 | |
|   routine that returns a struct containing usage properties and
 | |
|   statistics. It should work on any system that has a
 | |
|   /usr/include/malloc.h defining struct mallinfo.  The main
 | |
|   declaration needed is the mallinfo struct that is returned (by-copy)
 | |
|   by mallinfo().  The malloinfo struct contains a bunch of fields that
 | |
|   are not even meaningful in this version of malloc.  These fields are
 | |
|   are instead filled by mallinfo() with other numbers that might be of
 | |
|   interest.
 | |
| 
 | |
|   HAVE_USR_INCLUDE_MALLOC_H should be set if you have a
 | |
|   /usr/include/malloc.h file that includes a declaration of struct
 | |
|   mallinfo.  If so, it is included; else a compliant version is
 | |
|   declared below.  These must be precisely the same for mallinfo() to
 | |
|   work.  The original SVID version of this struct, defined on most
 | |
|   systems with mallinfo, declares all fields as ints. But some others
 | |
|   define as unsigned long. If your system defines the fields using a
 | |
|   type of different width than listed here, you MUST #include your
 | |
|   system version and #define HAVE_USR_INCLUDE_MALLOC_H.
 | |
| */
 | |
| 
 | |
| /* #define HAVE_USR_INCLUDE_MALLOC_H */
 | |
| 
 | |
| #ifdef HAVE_USR_INCLUDE_MALLOC_H
 | |
| #include "/usr/include/malloc.h"
 | |
| #else /* HAVE_USR_INCLUDE_MALLOC_H */
 | |
| #ifndef STRUCT_MALLINFO_DECLARED
 | |
| /* HP-UX (and others?) redefines mallinfo unless _STRUCT_MALLINFO is defined */
 | |
| #define _STRUCT_MALLINFO
 | |
| #define STRUCT_MALLINFO_DECLARED 1
 | |
| struct mallinfo {
 | |
| 	MALLINFO_FIELD_TYPE arena;	/* non-mmapped space allocated from system */
 | |
| 	MALLINFO_FIELD_TYPE ordblks;	/* number of free chunks */
 | |
| 	MALLINFO_FIELD_TYPE smblks;	/* always 0 */
 | |
| 	MALLINFO_FIELD_TYPE hblks;	/* always 0 */
 | |
| 	MALLINFO_FIELD_TYPE hblkhd;	/* space in mmapped regions */
 | |
| 	MALLINFO_FIELD_TYPE usmblks;	/* maximum total allocated space */
 | |
| 	MALLINFO_FIELD_TYPE fsmblks;	/* always 0 */
 | |
| 	MALLINFO_FIELD_TYPE uordblks;	/* total allocated space */
 | |
| 	MALLINFO_FIELD_TYPE fordblks;	/* total free space */
 | |
| 	MALLINFO_FIELD_TYPE keepcost;	/* releasable (via malloc_trim) space */
 | |
| };
 | |
| #endif /* STRUCT_MALLINFO_DECLARED */
 | |
| #endif /* HAVE_USR_INCLUDE_MALLOC_H */
 | |
| #endif /* NO_MALLINFO */
 | |
| 
 | |
| /*
 | |
|   Try to persuade compilers to inline. The most critical functions for
 | |
|   inlining are defined as macros, so these aren't used for them.
 | |
| */
 | |
| 
 | |
| #ifndef FORCEINLINE
 | |
| #if defined(__GNUC__)
 | |
| #define FORCEINLINE __inline __attribute__ ((always_inline))
 | |
| #elif defined(_MSC_VER)
 | |
| #define FORCEINLINE __forceinline
 | |
| #endif
 | |
| #endif
 | |
| #ifndef NOINLINE
 | |
| #if defined(__GNUC__)
 | |
| #define NOINLINE __attribute__ ((noinline))
 | |
| #elif defined(_MSC_VER)
 | |
| #define NOINLINE __declspec(noinline)
 | |
| #else
 | |
| #define NOINLINE
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| #ifdef __cplusplus
 | |
| extern "C" {
 | |
| #ifndef FORCEINLINE
 | |
| #define FORCEINLINE inline
 | |
| #endif
 | |
| #endif				/* __cplusplus */
 | |
| #ifndef FORCEINLINE
 | |
| #define FORCEINLINE
 | |
| #endif
 | |
| 
 | |
| #if !ONLY_MSPACES
 | |
| 
 | |
| /* ------------------- Declarations of public routines ------------------- */
 | |
| 
 | |
| #ifndef USE_DL_PREFIX
 | |
| #define dlcalloc               calloc
 | |
| #define dlfree                 free
 | |
| #define dlmalloc               malloc
 | |
| #define dlmemalign             memalign
 | |
| #define dlposix_memalign       posix_memalign
 | |
| #define dlrealloc              realloc
 | |
| #define dlrealloc_in_place     realloc_in_place
 | |
| #define dlvalloc               valloc
 | |
| #define dlpvalloc              pvalloc
 | |
| #define dlmallinfo             mallinfo
 | |
| #define dlmallopt              mallopt
 | |
| #define dlmalloc_trim          malloc_trim
 | |
| #define dlmalloc_stats         malloc_stats
 | |
| #define dlmalloc_usable_size   malloc_usable_size
 | |
| #define dlmalloc_footprint     malloc_footprint
 | |
| #define dlmalloc_max_footprint malloc_max_footprint
 | |
| #define dlmalloc_footprint_limit malloc_footprint_limit
 | |
| #define dlmalloc_set_footprint_limit malloc_set_footprint_limit
 | |
| #define dlmalloc_inspect_all   malloc_inspect_all
 | |
| #define dlindependent_calloc   independent_calloc
 | |
| #define dlindependent_comalloc independent_comalloc
 | |
| #define dlbulk_free            bulk_free
 | |
| #endif				/* USE_DL_PREFIX */
 | |
| 
 | |
| /*
 | |
|   malloc(size_t n)
 | |
|   Returns a pointer to a newly allocated chunk of at least n bytes, or
 | |
|   null if no space is available, in which case errno is set to ENOMEM
 | |
|   on ANSI C systems.
 | |
| 
 | |
|   If n is zero, malloc returns a minimum-sized chunk. (The minimum
 | |
|   size is 16 bytes on most 32bit systems, and 32 bytes on 64bit
 | |
|   systems.)  Note that size_t is an unsigned type, so calls with
 | |
|   arguments that would be negative if signed are interpreted as
 | |
|   requests for huge amounts of space, which will often fail. The
 | |
|   maximum supported value of n differs across systems, but is in all
 | |
|   cases less than the maximum representable value of a size_t.
 | |
| */
 | |
| 	DLMALLOC_EXPORT void *dlmalloc(size_t);
 | |
| 
 | |
| /*
 | |
|   free(void* p)
 | |
|   Releases the chunk of memory pointed to by p, that had been previously
 | |
|   allocated using malloc or a related routine such as realloc.
 | |
|   It has no effect if p is null. If p was not malloced or already
 | |
|   freed, free(p) will by default cause the current program to abort.
 | |
| */
 | |
| 	DLMALLOC_EXPORT void dlfree(void *);
 | |
| 
 | |
| /*
 | |
|   calloc(size_t n_elements, size_t element_size);
 | |
|   Returns a pointer to n_elements * element_size bytes, with all locations
 | |
|   set to zero.
 | |
| */
 | |
| 	DLMALLOC_EXPORT void *dlcalloc(size_t, size_t);
 | |
| 
 | |
| /*
 | |
|   realloc(void* p, size_t n)
 | |
|   Returns a pointer to a chunk of size n that contains the same data
 | |
|   as does chunk p up to the minimum of (n, p's size) bytes, or null
 | |
|   if no space is available.
 | |
| 
 | |
|   The returned pointer may or may not be the same as p. The algorithm
 | |
|   prefers extending p in most cases when possible, otherwise it
 | |
|   employs the equivalent of a malloc-copy-free sequence.
 | |
| 
 | |
|   If p is null, realloc is equivalent to malloc.
 | |
| 
 | |
|   If space is not available, realloc returns null, errno is set (if on
 | |
|   ANSI) and p is NOT freed.
 | |
| 
 | |
|   if n is for fewer bytes than already held by p, the newly unused
 | |
|   space is lopped off and freed if possible.  realloc with a size
 | |
|   argument of zero (re)allocates a minimum-sized chunk.
 | |
| 
 | |
|   The old unix realloc convention of allowing the last-free'd chunk
 | |
|   to be used as an argument to realloc is not supported.
 | |
| */
 | |
| 	DLMALLOC_EXPORT void *dlrealloc(void *, size_t);
 | |
| 
 | |
| /*
 | |
|   realloc_in_place(void* p, size_t n)
 | |
|   Resizes the space allocated for p to size n, only if this can be
 | |
|   done without moving p (i.e., only if there is adjacent space
 | |
|   available if n is greater than p's current allocated size, or n is
 | |
|   less than or equal to p's size). This may be used instead of plain
 | |
|   realloc if an alternative allocation strategy is needed upon failure
 | |
|   to expand space; for example, reallocation of a buffer that must be
 | |
|   memory-aligned or cleared. You can use realloc_in_place to trigger
 | |
|   these alternatives only when needed.
 | |
| 
 | |
|   Returns p if successful; otherwise null.
 | |
| */
 | |
| 	DLMALLOC_EXPORT void *dlrealloc_in_place(void *, size_t);
 | |
| 
 | |
| /*
 | |
|   memalign(size_t alignment, size_t n);
 | |
|   Returns a pointer to a newly allocated chunk of n bytes, aligned
 | |
|   in accord with the alignment argument.
 | |
| 
 | |
|   The alignment argument should be a power of two. If the argument is
 | |
|   not a power of two, the nearest greater power is used.
 | |
|   8-byte alignment is guaranteed by normal malloc calls, so don't
 | |
|   bother calling memalign with an argument of 8 or less.
 | |
| 
 | |
|   Overreliance on memalign is a sure way to fragment space.
 | |
| */
 | |
| 	DLMALLOC_EXPORT void *dlmemalign(size_t, size_t);
 | |
| 
 | |
| /*
 | |
|   int posix_memalign(void** pp, size_t alignment, size_t n);
 | |
|   Allocates a chunk of n bytes, aligned in accord with the alignment
 | |
|   argument. Differs from memalign only in that it (1) assigns the
 | |
|   allocated memory to *pp rather than returning it, (2) fails and
 | |
|   returns KERROR_INVALID_REQUEST if the alignment is not a power of two (3) fails and
 | |
|   returns ENOMEM if memory cannot be allocated.
 | |
| */
 | |
| 	DLMALLOC_EXPORT int dlposix_memalign(void **, size_t, size_t);
 | |
| 
 | |
| /*
 | |
|   valloc(size_t n);
 | |
|   Equivalent to memalign(pagesize, n), where pagesize is the page
 | |
|   size of the system. If the pagesize is unknown, 4096 is used.
 | |
| */
 | |
| 	DLMALLOC_EXPORT void *dlvalloc(size_t);
 | |
| 
 | |
| /*
 | |
|   mallopt(int parameter_number, int parameter_value)
 | |
|   Sets tunable parameters The format is to provide a
 | |
|   (parameter-number, parameter-value) pair.  mallopt then sets the
 | |
|   corresponding parameter to the argument value if it can (i.e., so
 | |
|   long as the value is meaningful), and returns 1 if successful else
 | |
|   0.  To workaround the fact that mallopt is specified to use int,
 | |
|   not size_t parameters, the value -1 is specially treated as the
 | |
|   maximum unsigned size_t value.
 | |
| 
 | |
|   SVID/XPG/ANSI defines four standard param numbers for mallopt,
 | |
|   normally defined in malloc.h.  None of these are use in this malloc,
 | |
|   so setting them has no effect. But this malloc also supports other
 | |
|   options in mallopt. See below for details.  Briefly, supported
 | |
|   parameters are as follows (listed defaults are for "typical"
 | |
|   configurations).
 | |
| 
 | |
|   Symbol            param #  default    allowed param values
 | |
|   M_TRIM_THRESHOLD     -1   2*1024*1024   any   (-1 disables)
 | |
|   M_GRANULARITY        -2     page size   any power of 2 >= page size
 | |
|   M_MMAP_THRESHOLD     -3      256*1024   any   (or 0 if no MMAP support)
 | |
| */
 | |
| 	DLMALLOC_EXPORT int dlmallopt(int, int);
 | |
| 
 | |
| /*
 | |
|   malloc_footprint();
 | |
|   Returns the number of bytes obtained from the system.  The total
 | |
|   number of bytes allocated by malloc, realloc etc., is less than this
 | |
|   value. Unlike mallinfo, this function returns only a precomputed
 | |
|   result, so can be called frequently to monitor memory consumption.
 | |
|   Even if locks are otherwise defined, this function does not use them,
 | |
|   so results might not be up to date.
 | |
| */
 | |
| 	DLMALLOC_EXPORT size_t dlmalloc_footprint(void);
 | |
| 
 | |
| /*
 | |
|   malloc_max_footprint();
 | |
|   Returns the maximum number of bytes obtained from the system. This
 | |
|   value will be greater than current footprint if deallocated space
 | |
|   has been reclaimed by the system. The peak number of bytes allocated
 | |
|   by malloc, realloc etc., is less than this value. Unlike mallinfo,
 | |
|   this function returns only a precomputed result, so can be called
 | |
|   frequently to monitor memory consumption.  Even if locks are
 | |
|   otherwise defined, this function does not use them, so results might
 | |
|   not be up to date.
 | |
| */
 | |
| 	DLMALLOC_EXPORT size_t dlmalloc_max_footprint(void);
 | |
| 
 | |
| /*
 | |
|   malloc_footprint_limit();
 | |
|   Returns the number of bytes that the heap is allowed to obtain from
 | |
|   the system, returning the last value returned by
 | |
|   malloc_set_footprint_limit, or the maximum size_t value if
 | |
|   never set. The returned value reflects a permission. There is no
 | |
|   guarantee that this number of bytes can actually be obtained from
 | |
|   the system.
 | |
| */
 | |
| 	DLMALLOC_EXPORT size_t dlmalloc_footprint_limit();
 | |
| 
 | |
| /*
 | |
|   malloc_set_footprint_limit();
 | |
|   Sets the maximum number of bytes to obtain from the system, causing
 | |
|   failure returns from malloc and related functions upon attempts to
 | |
|   exceed this value. The argument value may be subject to page
 | |
|   rounding to an enforceable limit; this actual value is returned.
 | |
|   Using an argument of the maximum possible size_t effectively
 | |
|   disables checks. If the argument is less than or equal to the
 | |
|   current malloc_footprint, then all future allocations that require
 | |
|   additional system memory will fail. However, invocation cannot
 | |
|   retroactively deallocate existing used memory.
 | |
| */
 | |
| 	DLMALLOC_EXPORT size_t dlmalloc_set_footprint_limit(size_t bytes);
 | |
| 
 | |
| #if MALLOC_INSPECT_ALL
 | |
| /*
 | |
|   malloc_inspect_all(void(*handler)(void *start,
 | |
|                                     void *end,
 | |
|                                     size_t used_bytes,
 | |
|                                     void* callback_arg),
 | |
|                       void* arg);
 | |
|   Traverses the heap and calls the given handler for each managed
 | |
|   region, skipping all bytes that are (or may be) used for bookkeeping
 | |
|   purposes.  Traversal does not include include chunks that have been
 | |
|   directly memory mapped. Each reported region begins at the start
 | |
|   address, and continues up to but not including the end address.  The
 | |
|   first used_bytes of the region contain allocated data. If
 | |
|   used_bytes is zero, the region is unallocated. The handler is
 | |
|   invoked with the given callback argument. If locks are defined, they
 | |
|   are held during the entire traversal. It is a bad idea to invoke
 | |
|   other malloc functions from within the handler.
 | |
| 
 | |
|   For example, to count the number of in-use chunks with size greater
 | |
|   than 1000, you could write:
 | |
|   static int count = 0;
 | |
|   void count_chunks(void* start, void* end, size_t used, void* arg) {
 | |
|     if (used >= 1000) ++count;
 | |
|   }
 | |
|   then:
 | |
|     malloc_inspect_all(count_chunks, NULL);
 | |
| 
 | |
|   malloc_inspect_all is compiled only if MALLOC_INSPECT_ALL is defined.
 | |
| */
 | |
| 	DLMALLOC_EXPORT void dlmalloc_inspect_all(void (*handler) (void *, void *, size_t, void *), void *arg);
 | |
| 
 | |
| #endif				/* MALLOC_INSPECT_ALL */
 | |
| 
 | |
| #if !NO_MALLINFO
 | |
| /*
 | |
|   mallinfo()
 | |
|   Returns (by copy) a struct containing various summary statistics:
 | |
| 
 | |
|   arena:     current total non-mmapped bytes allocated from system
 | |
|   ordblks:   the number of free chunks
 | |
|   smblks:    always zero.
 | |
|   hblks:     current number of mmapped regions
 | |
|   hblkhd:    total bytes held in mmapped regions
 | |
|   usmblks:   the maximum total allocated space. This will be greater
 | |
|                 than current total if trimming has occurred.
 | |
|   fsmblks:   always zero
 | |
|   uordblks:  current total allocated space (normal or mmapped)
 | |
|   fordblks:  total free space
 | |
|   keepcost:  the maximum number of bytes that could ideally be released
 | |
|                back to system via malloc_trim. ("ideally" means that
 | |
|                it ignores page restrictions etc.)
 | |
| 
 | |
|   Because these fields are ints, but internal bookkeeping may
 | |
|   be kept as longs, the reported values may wrap around zero and
 | |
|   thus be inaccurate.
 | |
| */
 | |
| 	DLMALLOC_EXPORT struct mallinfo dlmallinfo(void);
 | |
| #endif				/* NO_MALLINFO */
 | |
| 
 | |
| /*
 | |
|   independent_calloc(size_t n_elements, size_t element_size, void* chunks[]);
 | |
| 
 | |
|   independent_calloc is similar to calloc, but instead of returning a
 | |
|   single cleared space, it returns an array of pointers to n_elements
 | |
|   independent elements that can hold contents of size elem_size, each
 | |
|   of which starts out cleared, and can be independently freed,
 | |
|   realloc'ed etc. The elements are guaranteed to be adjacently
 | |
|   allocated (this is not guaranteed to occur with multiple callocs or
 | |
|   mallocs), which may also improve cache locality in some
 | |
|   applications.
 | |
| 
 | |
|   The "chunks" argument is optional (i.e., may be null, which is
 | |
|   probably the most typical usage). If it is null, the returned array
 | |
|   is itself dynamically allocated and should also be freed when it is
 | |
|   no longer needed. Otherwise, the chunks array must be of at least
 | |
|   n_elements in length. It is filled in with the pointers to the
 | |
|   chunks.
 | |
| 
 | |
|   In either case, independent_calloc returns this pointer array, or
 | |
|   null if the allocation failed.  If n_elements is zero and "chunks"
 | |
|   is null, it returns a chunk representing an array with zero elements
 | |
|   (which should be freed if not wanted).
 | |
| 
 | |
|   Each element must be freed when it is no longer needed. This can be
 | |
|   done all at once using bulk_free.
 | |
| 
 | |
|   independent_calloc simplifies and speeds up implementations of many
 | |
|   kinds of pools.  It may also be useful when constructing large data
 | |
|   structures that initially have a fixed number of fixed-sized nodes,
 | |
|   but the number is not known at compile time, and some of the nodes
 | |
|   may later need to be freed. For example:
 | |
| 
 | |
|   struct Node { int item; struct Node* next; };
 | |
| 
 | |
|   struct Node* build_list() {
 | |
|     struct Node** pool;
 | |
|     int n = read_number_of_nodes_needed();
 | |
|     if (n <= 0) return 0;
 | |
|     pool = (struct Node**)(independent_calloc(n, sizeof(struct Node), 0);
 | |
|     if (pool == 0) die();
 | |
|     // organize into a linked list...
 | |
|     struct Node* first = pool[0];
 | |
|     for (i = 0; i < n-1; ++i)
 | |
|       pool[i]->next = pool[i+1];
 | |
|     free(pool);     // Can now free the array (or not, if it is needed later)
 | |
|     return first;
 | |
|   }
 | |
| */
 | |
| 	DLMALLOC_EXPORT void **dlindependent_calloc(size_t, size_t, void **);
 | |
| 
 | |
| /*
 | |
|   independent_comalloc(size_t n_elements, size_t sizes[], void* chunks[]);
 | |
| 
 | |
|   independent_comalloc allocates, all at once, a set of n_elements
 | |
|   chunks with sizes indicated in the "sizes" array.    It returns
 | |
|   an array of pointers to these elements, each of which can be
 | |
|   independently freed, realloc'ed etc. The elements are guaranteed to
 | |
|   be adjacently allocated (this is not guaranteed to occur with
 | |
|   multiple callocs or mallocs), which may also improve cache locality
 | |
|   in some applications.
 | |
| 
 | |
|   The "chunks" argument is optional (i.e., may be null). If it is null
 | |
|   the returned array is itself dynamically allocated and should also
 | |
|   be freed when it is no longer needed. Otherwise, the chunks array
 | |
|   must be of at least n_elements in length. It is filled in with the
 | |
|   pointers to the chunks.
 | |
| 
 | |
|   In either case, independent_comalloc returns this pointer array, or
 | |
|   null if the allocation failed.  If n_elements is zero and chunks is
 | |
|   null, it returns a chunk representing an array with zero elements
 | |
|   (which should be freed if not wanted).
 | |
| 
 | |
|   Each element must be freed when it is no longer needed. This can be
 | |
|   done all at once using bulk_free.
 | |
| 
 | |
|   independent_comallac differs from independent_calloc in that each
 | |
|   element may have a different size, and also that it does not
 | |
|   automatically clear elements.
 | |
| 
 | |
|   independent_comalloc can be used to speed up allocation in cases
 | |
|   where several structs or objects must always be allocated at the
 | |
|   same time.  For example:
 | |
| 
 | |
|   struct Head { ... }
 | |
|   struct Foot { ... }
 | |
| 
 | |
|   void send_message(char* msg) {
 | |
|     int msglen = strlen(msg);
 | |
|     size_t sizes[3] = { sizeof(struct Head), msglen, sizeof(struct Foot) };
 | |
|     void* chunks[3];
 | |
|     if (independent_comalloc(3, sizes, chunks) == 0)
 | |
|       die();
 | |
|     struct Head* head = (struct Head*)(chunks[0]);
 | |
|     char*        body = (char*)(chunks[1]);
 | |
|     struct Foot* foot = (struct Foot*)(chunks[2]);
 | |
|     // ...
 | |
|   }
 | |
| 
 | |
|   In general though, independent_comalloc is worth using only for
 | |
|   larger values of n_elements. For small values, you probably won't
 | |
|   detect enough difference from series of malloc calls to bother.
 | |
| 
 | |
|   Overuse of independent_comalloc can increase overall memory usage,
 | |
|   since it cannot reuse existing noncontiguous small chunks that
 | |
|   might be available for some of the elements.
 | |
| */
 | |
| 	DLMALLOC_EXPORT void **dlindependent_comalloc(size_t, size_t *, void **);
 | |
| 
 | |
| /*
 | |
|   bulk_free(void* array[], size_t n_elements)
 | |
|   Frees and clears (sets to null) each non-null pointer in the given
 | |
|   array.  This is likely to be faster than freeing them one-by-one.
 | |
|   If footers are used, pointers that have been allocated in different
 | |
|   mspaces are not freed or cleared, and the count of all such pointers
 | |
|   is returned.  For large arrays of pointers with poor locality, it
 | |
|   may be worthwhile to sort this array before calling bulk_free.
 | |
| */
 | |
| 	DLMALLOC_EXPORT size_t dlbulk_free(void **, size_t n_elements);
 | |
| 
 | |
| /*
 | |
|   pvalloc(size_t n);
 | |
|   Equivalent to valloc(minimum-page-that-holds(n)), that is,
 | |
|   round up n to nearest pagesize.
 | |
|  */
 | |
| 	DLMALLOC_EXPORT void *dlpvalloc(size_t);
 | |
| 
 | |
| /*
 | |
|   malloc_trim(size_t pad);
 | |
| 
 | |
|   If possible, gives memory back to the system (via negative arguments
 | |
|   to sbrk) if there is unused memory at the `high' end of the malloc
 | |
|   pool or in unused MMAP segments. You can call this after freeing
 | |
|   large blocks of memory to potentially reduce the system-level memory
 | |
|   requirements of a program. However, it cannot guarantee to reduce
 | |
|   memory. Under some allocation patterns, some large free blocks of
 | |
|   memory will be locked between two used chunks, so they cannot be
 | |
|   given back to the system.
 | |
| 
 | |
|   The `pad' argument to malloc_trim represents the amount of free
 | |
|   trailing space to leave untrimmed. If this argument is zero, only
 | |
|   the minimum amount of memory to maintain internal data structures
 | |
|   will be left. Non-zero arguments can be supplied to maintain enough
 | |
|   trailing space to service future expected allocations without having
 | |
|   to re-obtain memory from the system.
 | |
| 
 | |
|   Malloc_trim returns 1 if it actually released any memory, else 0.
 | |
| */
 | |
| 	DLMALLOC_EXPORT int dlmalloc_trim(size_t);
 | |
| 
 | |
| /*
 | |
|   malloc_stats();
 | |
|   Prints on stderr the amount of space obtained from the system (both
 | |
|   via sbrk and mmap), the maximum amount (which may be more than
 | |
|   current if malloc_trim and/or munmap got called), and the current
 | |
|   number of bytes allocated via malloc (or realloc, etc) but not yet
 | |
|   freed. Note that this is the number of bytes allocated, not the
 | |
|   number requested. It will be larger than the number requested
 | |
|   because of alignment and bookkeeping overhead. Because it includes
 | |
|   alignment wastage as being in use, this figure may be greater than
 | |
|   zero even when no user-level chunks are allocated.
 | |
| 
 | |
|   The reported current and maximum system memory can be inaccurate if
 | |
|   a program makes other calls to system memory allocation functions
 | |
|   (normally sbrk) outside of malloc.
 | |
| 
 | |
|   malloc_stats prints only the most commonly interesting statistics.
 | |
|   More information can be obtained by calling mallinfo.
 | |
| */
 | |
| 	DLMALLOC_EXPORT void dlmalloc_stats(void);
 | |
| 
 | |
| /*
 | |
|   malloc_usable_size(void* p);
 | |
| 
 | |
|   Returns the number of bytes you can actually use in
 | |
|   an allocated chunk, which may be more than you requested (although
 | |
|   often not) due to alignment and minimum size constraints.
 | |
|   You can use this many bytes without worrying about
 | |
|   overwriting other allocated objects. This is not a particularly great
 | |
|   programming practice. malloc_usable_size can be more useful in
 | |
|   debugging and assertions, for example:
 | |
| 
 | |
|   p = malloc(n);
 | |
|   assert(malloc_usable_size(p) >= 256);
 | |
| */
 | |
| 	size_t dlmalloc_usable_size(void *);
 | |
| 
 | |
| #endif				/* ONLY_MSPACES */
 | |
| 
 | |
| #if MSPACES
 | |
| 
 | |
| /*
 | |
|   mspace is an opaque type representing an independent
 | |
|   region of space that supports mspace_malloc, etc.
 | |
| */
 | |
| 	typedef void *mspace;
 | |
| 
 | |
| /*
 | |
|   create_mspace creates and returns a new independent space with the
 | |
|   given initial capacity, or, if 0, the default granularity size.  It
 | |
|   returns null if there is no system memory available to create the
 | |
|   space.  If argument locked is non-zero, the space uses a separate
 | |
|   lock to control access. The capacity of the space will grow
 | |
|   dynamically as needed to service mspace_malloc requests.  You can
 | |
|   control the sizes of incremental increases of this space by
 | |
|   compiling with a different DEFAULT_GRANULARITY or dynamically
 | |
|   setting with mallopt(M_GRANULARITY, value).
 | |
| */
 | |
| 	DLMALLOC_EXPORT mspace create_mspace(size_t capacity, int locked);
 | |
| 
 | |
| /*
 | |
|   destroy_mspace destroys the given space, and attempts to return all
 | |
|   of its memory back to the system, returning the total number of
 | |
|   bytes freed. After destruction, the results of access to all memory
 | |
|   used by the space become undefined.
 | |
| */
 | |
| 	DLMALLOC_EXPORT size_t destroy_mspace(mspace msp);
 | |
| 
 | |
| /*
 | |
|   create_mspace_with_base uses the memory supplied as the initial base
 | |
|   of a new mspace. Part (less than 128*sizeof(size_t) bytes) of this
 | |
|   space is used for bookkeeping, so the capacity must be at least this
 | |
|   large. (Otherwise 0 is returned.) When this initial space is
 | |
|   exhausted, additional memory will be obtained from the system.
 | |
|   Destroying this space will deallocate all additionally allocated
 | |
|   space (if possible) but not the initial base.
 | |
| */
 | |
| 	DLMALLOC_EXPORT mspace create_mspace_with_base(void *base, size_t capacity, int locked);
 | |
| 
 | |
| /*
 | |
|   mspace_track_large_chunks controls whether requests for large chunks
 | |
|   are allocated in their own untracked mmapped regions, separate from
 | |
|   others in this mspace. By default large chunks are not tracked,
 | |
|   which reduces fragmentation. However, such chunks are not
 | |
|   necessarily released to the system upon destroy_mspace.  Enabling
 | |
|   tracking by setting to true may increase fragmentation, but avoids
 | |
|   leakage when relying on destroy_mspace to release all memory
 | |
|   allocated using this space.  The function returns the previous
 | |
|   setting.
 | |
| */
 | |
| 	DLMALLOC_EXPORT int mspace_track_large_chunks(mspace msp, int enable);
 | |
| 
 | |
| 
 | |
| /*
 | |
|   mspace_malloc behaves as malloc, but operates within
 | |
|   the given space.
 | |
| */
 | |
| 	DLMALLOC_EXPORT void *mspace_malloc(mspace msp, size_t bytes);
 | |
| 
 | |
| /*
 | |
|   mspace_free behaves as free, but operates within
 | |
|   the given space.
 | |
| 
 | |
|   If compiled with FOOTERS==1, mspace_free is not actually needed.
 | |
|   free may be called instead of mspace_free because freed chunks from
 | |
|   any space are handled by their originating spaces.
 | |
| */
 | |
| 	DLMALLOC_EXPORT void mspace_free(mspace msp, void *mem);
 | |
| 
 | |
| /*
 | |
|   mspace_realloc behaves as realloc, but operates within
 | |
|   the given space.
 | |
| 
 | |
|   If compiled with FOOTERS==1, mspace_realloc is not actually
 | |
|   needed.  realloc may be called instead of mspace_realloc because
 | |
|   realloced chunks from any space are handled by their originating
 | |
|   spaces.
 | |
| */
 | |
| 	DLMALLOC_EXPORT void *mspace_realloc(mspace msp, void *mem, size_t newsize);
 | |
| 
 | |
| /*
 | |
|   mspace_calloc behaves as calloc, but operates within
 | |
|   the given space.
 | |
| */
 | |
| 	DLMALLOC_EXPORT void *mspace_calloc(mspace msp, size_t n_elements, size_t elem_size);
 | |
| 
 | |
| /*
 | |
|   mspace_memalign behaves as memalign, but operates within
 | |
|   the given space.
 | |
| */
 | |
| 	DLMALLOC_EXPORT void *mspace_memalign(mspace msp, size_t alignment, size_t bytes);
 | |
| 
 | |
| /*
 | |
|   mspace_independent_calloc behaves as independent_calloc, but
 | |
|   operates within the given space.
 | |
| */
 | |
| 	DLMALLOC_EXPORT void **mspace_independent_calloc(mspace msp, size_t n_elements, size_t elem_size, void *chunks[]);
 | |
| 
 | |
| /*
 | |
|   mspace_independent_comalloc behaves as independent_comalloc, but
 | |
|   operates within the given space.
 | |
| */
 | |
| 	DLMALLOC_EXPORT void **mspace_independent_comalloc(mspace msp, size_t n_elements, size_t sizes[], void *chunks[]);
 | |
| 
 | |
| /*
 | |
|   mspace_footprint() returns the number of bytes obtained from the
 | |
|   system for this space.
 | |
| */
 | |
| 	DLMALLOC_EXPORT size_t mspace_footprint(mspace msp);
 | |
| 
 | |
| /*
 | |
|   mspace_max_footprint() returns the peak number of bytes obtained from the
 | |
|   system for this space.
 | |
| */
 | |
| 	DLMALLOC_EXPORT size_t mspace_max_footprint(mspace msp);
 | |
| 
 | |
| 
 | |
| #if !NO_MALLINFO
 | |
| /*
 | |
|   mspace_mallinfo behaves as mallinfo, but reports properties of
 | |
|   the given space.
 | |
| */
 | |
| 	DLMALLOC_EXPORT struct mallinfo mspace_mallinfo(mspace msp);
 | |
| #endif				/* NO_MALLINFO */
 | |
| 
 | |
| /*
 | |
|   malloc_usable_size(void* p) behaves the same as malloc_usable_size;
 | |
| */
 | |
| 	DLMALLOC_EXPORT size_t mspace_usable_size(const void *mem);
 | |
| 
 | |
| /*
 | |
|   mspace_malloc_stats behaves as malloc_stats, but reports
 | |
|   properties of the given space.
 | |
| */
 | |
| 	DLMALLOC_EXPORT void mspace_malloc_stats(mspace msp);
 | |
| 
 | |
| /*
 | |
|   mspace_trim behaves as malloc_trim, but
 | |
|   operates within the given space.
 | |
| */
 | |
| 	DLMALLOC_EXPORT int mspace_trim(mspace msp, size_t pad);
 | |
| 
 | |
| /*
 | |
|   An alias for mallopt.
 | |
| */
 | |
| 	DLMALLOC_EXPORT int mspace_mallopt(int, int);
 | |
| 
 | |
| #endif				/* MSPACES */
 | |
| 
 | |
| #ifdef __cplusplus
 | |
| }				/* end of extern "C" */
 | |
| #endif				/* __cplusplus */
 | |
| /*
 | |
|   ========================================================================
 | |
|   To make a fully customizable malloc.h header file, cut everything
 | |
|   above this line, put into file malloc.h, edit to suit, and #include it
 | |
|   on the next line, as well as in programs that use this malloc.
 | |
|   ========================================================================
 | |
| *//* #include "malloc.h" *//*------------------------------ internal #includes ---------------------- */
 | |
| #ifdef _MSC_VER
 | |
| #pragma warning( disable : 4146 )	/* no "unsigned" warnings */
 | |
| #endif				/* _MSC_VER */
 | |
| #if !NO_MALLOC_STATS
 | |
| #include <stdio.h>		/* for printing in malloc_stats */
 | |
| #endif				/* NO_MALLOC_STATS */
 | |
| #ifndef LACKS_ERRNO_H
 | |
| #include <errno.h>		/* for MALLOC_FAILURE_ACTION */
 | |
| #endif				/* LACKS_ERRNO_H */
 | |
| #ifdef DEBUG
 | |
| #if ABORT_ON_ASSERT_FAILURE
 | |
| #undef assert
 | |
| #define assert(x) if(!(x)) ABORT
 | |
| #else				/* ABORT_ON_ASSERT_FAILURE */
 | |
| #include <assert.h>
 | |
| #endif				/* ABORT_ON_ASSERT_FAILURE */
 | |
| #else				/* DEBUG */
 | |
| #ifndef assert
 | |
| #define assert(x)
 | |
| #endif
 | |
| #define DEBUG 0
 | |
| #endif				/* DEBUG */
 | |
| #if !defined(WIN32) && !defined(LACKS_TIME_H)
 | |
| #include <time.h>		/* for magic initialization */
 | |
| #endif				/* WIN32 */
 | |
| #ifndef LACKS_STDLIB_H
 | |
| #include <stdlib.h>		/* for abort() */
 | |
| #endif				/* LACKS_STDLIB_H */
 | |
| #ifndef LACKS_STRING_H
 | |
| #include <string.h>		/* for memset etc */
 | |
| #endif				/* LACKS_STRING_H */
 | |
| #if USE_BUILTIN_FFS
 | |
| #ifndef LACKS_STRINGS_H
 | |
| #include <strings.h>		/* for ffs */
 | |
| #endif				/* LACKS_STRINGS_H */
 | |
| #endif				/* USE_BUILTIN_FFS */
 | |
| #if HAVE_MMAP
 | |
| #ifndef LACKS_SYS_MMAN_H
 | |
| /* On some versions of linux, mremap decl in mman.h needs __USE_GNU set */
 | |
| #if (defined(linux) && !defined(__USE_GNU))
 | |
| #define __USE_GNU 1
 | |
| #include <sys/mman.h>		/* for mmap */
 | |
| #undef __USE_GNU
 | |
| #else
 | |
| #include <sys/mman.h>		/* for mmap */
 | |
| #endif				/* linux */
 | |
| #endif				/* LACKS_SYS_MMAN_H */
 | |
| #ifndef LACKS_FCNTL_H
 | |
| #include <fcntl.h>
 | |
| #endif				/* LACKS_FCNTL_H */
 | |
| #endif				/* HAVE_MMAP */
 | |
| #ifndef LACKS_UNISTD_H
 | |
| #include <unistd.h>		/* for sbrk, sysconf */
 | |
| #else				/* LACKS_UNISTD_H */
 | |
| #if !defined(__FreeBSD__) && !defined(__OpenBSD__) && !defined(__NetBSD__)
 | |
| extern void *sbrk(ptrdiff_t);
 | |
| #endif /* FreeBSD etc */
 | |
| #endif /* LACKS_UNISTD_H */
 | |
| 
 | |
| /* Declarations for locking */
 | |
| #if USE_LOCKS
 | |
| #ifndef WIN32
 | |
| #if defined (__SVR4) && defined (__sun)	/* solaris */
 | |
| #include <thread.h>
 | |
| #elif !defined(LACKS_SCHED_H)
 | |
| #include <sched.h>
 | |
| #endif /* solaris or LACKS_SCHED_H */
 | |
| #if (defined(USE_RECURSIVE_LOCKS) && USE_RECURSIVE_LOCKS != 0) || !USE_SPIN_LOCKS
 | |
| #include <pthread.h>
 | |
| #endif /* USE_RECURSIVE_LOCKS ... */
 | |
| #elif defined(_MSC_VER)
 | |
| #ifndef _M_AMD64
 | |
| /* These are already defined on AMD64 builds */
 | |
| #ifdef __cplusplus
 | |
| extern "C" {
 | |
| #endif				/* __cplusplus */
 | |
| 	LONG __cdecl _InterlockedCompareExchange(LONG volatile *Dest, LONG Exchange, LONG Comp);
 | |
| 	LONG __cdecl _InterlockedExchange(LONG volatile *Target, LONG Value);
 | |
| #ifdef __cplusplus
 | |
| }
 | |
| #endif				/* __cplusplus */
 | |
| #endif				/* _M_AMD64 */
 | |
| #pragma intrinsic (_InterlockedCompareExchange)
 | |
| #pragma intrinsic (_InterlockedExchange)
 | |
| #define interlockedcompareexchange _InterlockedCompareExchange
 | |
| #define interlockedexchange _InterlockedExchange
 | |
| #elif defined(WIN32) && defined(__GNUC__)
 | |
| #define interlockedcompareexchange(a, b, c) __sync_val_compare_and_swap(a, c, b)
 | |
| #define interlockedexchange __sync_lock_test_and_set
 | |
| #endif /* Win32 */
 | |
| #else /* USE_LOCKS */
 | |
| #endif /* USE_LOCKS */
 | |
| 
 | |
| #ifndef LOCK_AT_FORK
 | |
| #define LOCK_AT_FORK 0
 | |
| #endif
 | |
| 
 | |
| /* Declarations for bit scanning on win32 */
 | |
| #if defined(_MSC_VER) && _MSC_VER>=1300
 | |
| #ifndef BitScanForward		/* Try to avoid pulling in WinNT.h */
 | |
| #ifdef __cplusplus
 | |
| extern "C" {
 | |
| #endif				/* __cplusplus */
 | |
| 	unsigned char _BitScanForward(unsigned long *index, unsigned long mask);
 | |
| 	unsigned char _BitScanReverse(unsigned long *index, unsigned long mask);
 | |
| #ifdef __cplusplus
 | |
| }
 | |
| #endif				/* __cplusplus */
 | |
| #define BitScanForward _BitScanForward
 | |
| #define BitScanReverse _BitScanReverse
 | |
| #pragma intrinsic(_BitScanForward)
 | |
| #pragma intrinsic(_BitScanReverse)
 | |
| #endif				/* BitScanForward */
 | |
| #endif				/* defined(_MSC_VER) && _MSC_VER>=1300 */
 | |
| #ifndef WIN32
 | |
| #ifndef malloc_getpagesize
 | |
| #ifdef _SC_PAGESIZE		/* some SVR4 systems omit an underscore */
 | |
| #ifndef _SC_PAGE_SIZE
 | |
| #define _SC_PAGE_SIZE _SC_PAGESIZE
 | |
| #endif
 | |
| #endif
 | |
| #ifdef _SC_PAGE_SIZE
 | |
| #define malloc_getpagesize sysconf(_SC_PAGE_SIZE)
 | |
| #else
 | |
| #if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE)
 | |
| extern size_t getpagesize();
 | |
| #define malloc_getpagesize getpagesize()
 | |
| #else
 | |
| #ifdef WIN32			/* use supplied emulation of getpagesize */
 | |
| #define malloc_getpagesize getpagesize()
 | |
| #else
 | |
| #ifndef LACKS_SYS_PARAM_H
 | |
| #include <sys/param.h>
 | |
| #endif
 | |
| #ifdef EXEC_PAGESIZE
 | |
| #define malloc_getpagesize EXEC_PAGESIZE
 | |
| #else
 | |
| #ifdef NBPG
 | |
| #ifndef CLSIZE
 | |
| #define malloc_getpagesize NBPG
 | |
| #else
 | |
| #define malloc_getpagesize (NBPG * CLSIZE)
 | |
| #endif
 | |
| #else
 | |
| #ifdef NBPC
 | |
| #define malloc_getpagesize NBPC
 | |
| #else
 | |
| #ifdef PAGESIZE
 | |
| #define malloc_getpagesize PAGESIZE
 | |
| #else				/* just guess */
 | |
| #define malloc_getpagesize ((size_t)4096U)
 | |
| #endif
 | |
| #endif
 | |
| #endif
 | |
| #endif
 | |
| #endif
 | |
| #endif
 | |
| #endif
 | |
| #endif
 | |
| #endif
 | |
| /* ------------------- size_t and alignment properties -------------------- *//* The byte and bit size of a size_t */
 | |
| #define SIZE_T_SIZE         (sizeof(size_t))
 | |
| #define SIZE_T_BITSIZE      (sizeof(size_t) << 3)
 | |
| /* Some constants coerced to size_t *//* Annoying but necessary to avoid errors on some platforms */
 | |
| #define SIZE_T_ZERO         ((size_t)0)
 | |
| #define SIZE_T_ONE          ((size_t)1)
 | |
| #define SIZE_T_TWO          ((size_t)2)
 | |
| #define SIZE_T_FOUR         ((size_t)4)
 | |
| #define TWO_SIZE_T_SIZES    (SIZE_T_SIZE<<1)
 | |
| #define FOUR_SIZE_T_SIZES   (SIZE_T_SIZE<<2)
 | |
| #define SIX_SIZE_T_SIZES    (FOUR_SIZE_T_SIZES+TWO_SIZE_T_SIZES)
 | |
| #define HALF_MAX_SIZE_T     (MAX_SIZE_T / 2U)
 | |
| /* The bit mask value corresponding to MALLOC_ALIGNMENT */
 | |
| #define CHUNK_ALIGN_MASK    (MALLOC_ALIGNMENT - SIZE_T_ONE)
 | |
| /* True if address a has acceptable alignment */
 | |
| #define is_aligned(A)       (((size_t)((A)) & (CHUNK_ALIGN_MASK)) == 0)
 | |
| /* the number of bytes to offset an address to align it */
 | |
| #define align_offset(A)\
 | |
|  ((((size_t)(A) & CHUNK_ALIGN_MASK) == 0)? 0 :\
 | |
|   ((MALLOC_ALIGNMENT - ((size_t)(A) & CHUNK_ALIGN_MASK)) & CHUNK_ALIGN_MASK))
 | |
| /* -------------------------- MMAP preliminaries ------------------------- *//*
 | |
|    If HAVE_MORECORE or HAVE_MMAP are false, we just define calls and
 | |
|    checks to fail so compiler optimizer can delete code rather than
 | |
|    using so many "#if"s.
 | |
| *//* MORECORE and MMAP must return MFAIL on failure */
 | |
| #define MFAIL                ((void*)(MAX_SIZE_T))
 | |
| #define CMFAIL               ((char*)(MFAIL))	/* defined for convenience */
 | |
| #if HAVE_MMAP
 | |
| #ifndef WIN32
 | |
| #define MUNMAP_DEFAULT(a, s)  munmap((a), (s))
 | |
| #define MMAP_PROT            (PROT_READ|PROT_WRITE)
 | |
| #if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
 | |
| #define MAP_ANONYMOUS        MAP_ANON
 | |
| #endif				/* MAP_ANON */
 | |
| #ifdef MAP_ANONYMOUS
 | |
| #define MMAP_FLAGS           (MAP_PRIVATE|MAP_ANONYMOUS)
 | |
| #define MMAP_DEFAULT(s)       mmap(0, (s), MMAP_PROT, MMAP_FLAGS, -1, 0)
 | |
| #else				/* MAP_ANONYMOUS */
 | |
| /*
 | |
|    Nearly all versions of mmap support MAP_ANONYMOUS, so the following
 | |
|    is unlikely to be needed, but is supplied just in case.
 | |
| */
 | |
| #define MMAP_FLAGS           (MAP_PRIVATE)
 | |
| static int dev_zero_fd = -1;	/* Cached file descriptor for /dev/zero. */
 | |
| #define MMAP_DEFAULT(s) ((dev_zero_fd < 0) ? \
 | |
|            (dev_zero_fd = open("/dev/zero", O_RDWR), \
 | |
|             mmap(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0)) : \
 | |
|             mmap(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0))
 | |
| #endif /* MAP_ANONYMOUS */
 | |
| 
 | |
| #define DIRECT_MMAP_DEFAULT(s) MMAP_DEFAULT(s)
 | |
| 
 | |
| #else				/* WIN32 */
 | |
| /* Win32 MMAP via VirtualAlloc */ static FORCEINLINE void *win32mmap(size_t size)
 | |
| {
 | |
| 	void *ptr = VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
 | |
| 	return (ptr != 0) ? ptr : MFAIL;
 | |
| }
 | |
| 
 | |
| /* For direct MMAP, use MEM_TOP_DOWN to minimize interference */
 | |
| static FORCEINLINE void *win32direct_mmap(size_t size)
 | |
| {
 | |
| 	void *ptr = VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT | MEM_TOP_DOWN,
 | |
| 				 PAGE_READWRITE);
 | |
| 	return (ptr != 0) ? ptr : MFAIL;
 | |
| }
 | |
| 
 | |
| /* This function supports releasing coalesed segments */
 | |
| static FORCEINLINE int win32munmap(void *ptr, size_t size)
 | |
| {
 | |
| 	MEMORY_BASIC_INFORMATION minfo;
 | |
| 	char *cptr = (char *) ptr;
 | |
| 	while(size) {
 | |
| 		if(VirtualQuery(cptr, &minfo, sizeof(minfo)) == 0)
 | |
| 			return -1;
 | |
| 		if(minfo.BaseAddress != cptr || minfo.AllocationBase != cptr || minfo.State != MEM_COMMIT || minfo.RegionSize > size)
 | |
| 			return -1;
 | |
| 		if(VirtualFree(cptr, 0, MEM_RELEASE) == 0)
 | |
| 			return -1;
 | |
| 		cptr += minfo.RegionSize;
 | |
| 		size -= minfo.RegionSize;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #define MMAP_DEFAULT(s)             win32mmap(s)
 | |
| #define MUNMAP_DEFAULT(a, s)        win32munmap((a), (s))
 | |
| #define DIRECT_MMAP_DEFAULT(s)      win32direct_mmap(s)
 | |
| #endif /* WIN32 */
 | |
| #endif /* HAVE_MMAP */
 | |
| 
 | |
| #if HAVE_MREMAP
 | |
| #ifndef WIN32
 | |
| #define MREMAP_DEFAULT(addr, osz, nsz, mv) mremap((addr), (osz), (nsz), (mv))
 | |
| #endif /* WIN32 */
 | |
| #endif /* HAVE_MREMAP */
 | |
| 
 | |
| /**
 | |
|  * Define CALL_MORECORE
 | |
|  */
 | |
| #if HAVE_MORECORE
 | |
| #ifdef MORECORE
 | |
| #define CALL_MORECORE(S)    MORECORE(S)
 | |
| #else /* MORECORE */
 | |
| #define CALL_MORECORE(S)    MORECORE_DEFAULT(S)
 | |
| #endif /* MORECORE */
 | |
| #else /* HAVE_MORECORE */
 | |
| #define CALL_MORECORE(S)        MFAIL
 | |
| #endif /* HAVE_MORECORE */
 | |
| 
 | |
| /**
 | |
|  * Define CALL_MMAP/CALL_MUNMAP/CALL_DIRECT_MMAP
 | |
|  */
 | |
| #if HAVE_MMAP
 | |
| #define USE_MMAP_BIT            (SIZE_T_ONE)
 | |
| 
 | |
| #ifdef MMAP
 | |
| #define CALL_MMAP(s)        MMAP(s)
 | |
| #else /* MMAP */
 | |
| #define CALL_MMAP(s)        MMAP_DEFAULT(s)
 | |
| #endif /* MMAP */
 | |
| #ifdef MUNMAP
 | |
| #define CALL_MUNMAP(a, s)   MUNMAP((a), (s))
 | |
| #else /* MUNMAP */
 | |
| #define CALL_MUNMAP(a, s)   MUNMAP_DEFAULT((a), (s))
 | |
| #endif /* MUNMAP */
 | |
| #ifdef DIRECT_MMAP
 | |
| #define CALL_DIRECT_MMAP(s) DIRECT_MMAP(s)
 | |
| #else /* DIRECT_MMAP */
 | |
| #define CALL_DIRECT_MMAP(s) DIRECT_MMAP_DEFAULT(s)
 | |
| #endif /* DIRECT_MMAP */
 | |
| #else /* HAVE_MMAP */
 | |
| #define USE_MMAP_BIT            (SIZE_T_ZERO)
 | |
| 
 | |
| #define MMAP(s)                 MFAIL
 | |
| #define MUNMAP(a, s)            (-1)
 | |
| #define DIRECT_MMAP(s)          MFAIL
 | |
| #define CALL_DIRECT_MMAP(s)     DIRECT_MMAP(s)
 | |
| #define CALL_MMAP(s)            MMAP(s)
 | |
| #define CALL_MUNMAP(a, s)       MUNMAP((a), (s))
 | |
| #endif /* HAVE_MMAP */
 | |
| 
 | |
| /**
 | |
|  * Define CALL_MREMAP
 | |
|  */
 | |
| #if HAVE_MMAP && HAVE_MREMAP
 | |
| #ifdef MREMAP
 | |
| #define CALL_MREMAP(addr, osz, nsz, mv) MREMAP((addr), (osz), (nsz), (mv))
 | |
| #else /* MREMAP */
 | |
| #define CALL_MREMAP(addr, osz, nsz, mv) MREMAP_DEFAULT((addr), (osz), (nsz), (mv))
 | |
| #endif /* MREMAP */
 | |
| #else /* HAVE_MMAP && HAVE_MREMAP */
 | |
| #define CALL_MREMAP(addr, osz, nsz, mv)     MFAIL
 | |
| #endif /* HAVE_MMAP && HAVE_MREMAP */
 | |
| 
 | |
| /* mstate bit set if continguous morecore disabled or failed */
 | |
| #define USE_NONCONTIGUOUS_BIT (4U)
 | |
| 
 | |
| /* segment bit set in create_mspace_with_base */
 | |
| #define EXTERN_BIT            (8U)
 | |
| 
 | |
| 
 | |
| /* --------------------------- Lock preliminaries ------------------------ */
 | |
| 
 | |
| /*
 | |
|   When locks are defined, there is one global lock, plus
 | |
|   one per-mspace lock.
 | |
| 
 | |
|   The global lock_ensures that mparams.magic and other unique
 | |
|   mparams values are initialized only once. It also protects
 | |
|   sequences of calls to MORECORE.  In many cases sys_alloc requires
 | |
|   two calls, that should not be interleaved with calls by other
 | |
|   threads.  This does not protect against direct calls to MORECORE
 | |
|   by other threads not using this lock, so there is still code to
 | |
|   cope the best we can on interference.
 | |
| 
 | |
|   Per-mspace locks surround calls to malloc, free, etc.
 | |
|   By default, locks are simple non-reentrant mutexes.
 | |
| 
 | |
|   Because lock-protected regions generally have bounded times, it is
 | |
|   OK to use the supplied simple spinlocks. Spinlocks are likely to
 | |
|   improve performance for lightly contended applications, but worsen
 | |
|   performance under heavy contention.
 | |
| 
 | |
|   If USE_LOCKS is > 1, the definitions of lock routines here are
 | |
|   bypassed, in which case you will need to define the type MLOCK_T,
 | |
|   and at least INITIAL_LOCK, DESTROY_LOCK, ACQUIRE_LOCK, RELEASE_LOCK
 | |
|   and TRY_LOCK.  You must also declare a
 | |
|     static MLOCK_T malloc_global_mutex = { initialization values };.
 | |
| 
 | |
| */
 | |
| 
 | |
| #if !USE_LOCKS
 | |
| #define USE_LOCK_BIT               (0U)
 | |
| #define INITIAL_LOCK(l)            (0)
 | |
| #define DESTROY_LOCK(l)            (0)
 | |
| #define ACQUIRE_MALLOC_GLOBAL_LOCK()
 | |
| #define RELEASE_MALLOC_GLOBAL_LOCK()
 | |
| 
 | |
| #else
 | |
| #if USE_LOCKS > 1
 | |
| /* -----------------------  User-defined locks ------------------------ */
 | |
| /* Define your own lock implementation here */
 | |
| /* #define INITIAL_LOCK(lk)  ... */
 | |
| /* #define DESTROY_LOCK(lk)  ... */
 | |
| /* #define ACQUIRE_LOCK(lk)  ... */
 | |
| /* #define RELEASE_LOCK(lk)  ... */
 | |
| /* #define TRY_LOCK(lk) ... */
 | |
| /* static MLOCK_T malloc_global_mutex = ... */
 | |
| 
 | |
| #elif USE_SPIN_LOCKS
 | |
| 
 | |
| /* First, define CAS_LOCK and CLEAR_LOCK on ints */
 | |
| /* Note CAS_LOCK defined to return 0 on success */
 | |
| 
 | |
| #if defined(__GNUC__)&& (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 1))
 | |
| #define CAS_LOCK(sl)     __sync_lock_test_and_set(sl, 1)
 | |
| #define CLEAR_LOCK(sl)   __sync_lock_release(sl)
 | |
| 
 | |
| #elif (defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__)))
 | |
| /* Custom spin locks for older gcc on x86 */
 | |
| static FORCEINLINE int x86_cas_lock(int *sl)
 | |
| {
 | |
| 	int ret;
 | |
| 	int val = 1;
 | |
| 	int cmp = 0;
 | |
| 	__asm__ __volatile__("lock; cmpxchgl %1, %2":"=a"(ret)
 | |
| 			     :"r"(val), "m"(*(sl)), "0"(cmp)
 | |
| 			     :"memory", "cc");
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static FORCEINLINE void x86_clear_lock(int *sl)
 | |
| {
 | |
| 	assert(*sl != 0);
 | |
| 	int prev = 0;
 | |
| 	int ret;
 | |
| 	__asm__ __volatile__("lock; xchgl %0, %1":"=r"(ret)
 | |
| 			     :"m"(*(sl)), "0"(prev)
 | |
| 			     :"memory");
 | |
| }
 | |
| 
 | |
| #define CAS_LOCK(sl)     x86_cas_lock(sl)
 | |
| #define CLEAR_LOCK(sl)   x86_clear_lock(sl)
 | |
| 
 | |
| #else /* Win32 MSC */
 | |
| #define CAS_LOCK(sl)     interlockedexchange(sl, (LONG)1)
 | |
| #define CLEAR_LOCK(sl)   interlockedexchange (sl, (LONG)0)
 | |
| 
 | |
| #endif /* ... gcc spins locks ... */
 | |
| 
 | |
| /* How to yield for a spin lock */
 | |
| #define SPINS_PER_YIELD       63
 | |
| #if defined(_MSC_VER)
 | |
| #define SLEEP_EX_DURATION     50	/* delay for yield/sleep */
 | |
| #define SPIN_LOCK_YIELD  SleepEx(SLEEP_EX_DURATION, FALSE)
 | |
| #elif defined (__SVR4) && defined (__sun)	/* solaris */
 | |
| #define SPIN_LOCK_YIELD   thr_yield();
 | |
| #elif !defined(LACKS_SCHED_H)
 | |
| #define SPIN_LOCK_YIELD   sched_yield();
 | |
| #else
 | |
| #define SPIN_LOCK_YIELD
 | |
| #endif /* ... yield ... */
 | |
| 
 | |
| #if !defined(USE_RECURSIVE_LOCKS) || USE_RECURSIVE_LOCKS == 0
 | |
| /* Plain spin locks use single word (embedded in malloc_states) */
 | |
| static int spin_acquire_lock(int *sl)
 | |
| {
 | |
| 	int spins = 0;
 | |
| 	while(*(volatile int *) sl != 0 || CAS_LOCK(sl)) {
 | |
| 		if((++spins & SPINS_PER_YIELD) == 0) {
 | |
| 			SPIN_LOCK_YIELD;
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #define MLOCK_T               int
 | |
| #define TRY_LOCK(sl)          !CAS_LOCK(sl)
 | |
| #define RELEASE_LOCK(sl)      CLEAR_LOCK(sl)
 | |
| #define ACQUIRE_LOCK(sl)      (CAS_LOCK(sl)? spin_acquire_lock(sl) : 0)
 | |
| #define INITIAL_LOCK(sl)      (*sl = 0)
 | |
| #define DESTROY_LOCK(sl)      (0)
 | |
| static MLOCK_T malloc_global_mutex = 0;
 | |
| 
 | |
| #else /* USE_RECURSIVE_LOCKS */
 | |
| /* types for lock owners */
 | |
| #ifdef WIN32
 | |
| #define THREAD_ID_T           DWORD
 | |
| #define CURRENT_THREAD        GetCurrentThreadId()
 | |
| #define EQ_OWNER(X,Y)         ((X) == (Y))
 | |
| #else
 | |
| /*
 | |
|   Note: the following assume that pthread_t is a type that can be
 | |
|   initialized to (casted) zero. If this is not the case, you will need to
 | |
|   somehow redefine these or not use spin locks.
 | |
| */
 | |
| #define THREAD_ID_T           pthread_t
 | |
| #define CURRENT_THREAD        pthread_self()
 | |
| #define EQ_OWNER(X,Y)         pthread_equal(X, Y)
 | |
| #endif
 | |
| 
 | |
| struct malloc_recursive_lock {
 | |
| 	int sl;
 | |
| 	unsigned int c;
 | |
| 	THREAD_ID_T threadid;
 | |
| };
 | |
| 
 | |
| #define MLOCK_T  struct malloc_recursive_lock
 | |
| static MLOCK_T malloc_global_mutex = { 0, 0, (THREAD_ID_T) 0 };
 | |
| 
 | |
| static FORCEINLINE void recursive_release_lock(MLOCK_T * lk)
 | |
| {
 | |
| 	assert(lk->sl != 0);
 | |
| 	if(--lk->c == 0) {
 | |
| 		CLEAR_LOCK(&lk->sl);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static FORCEINLINE int recursive_acquire_lock(MLOCK_T * lk)
 | |
| {
 | |
| 	THREAD_ID_T mythreadid = CURRENT_THREAD;
 | |
| 	int spins = 0;
 | |
| 	for(;;) {
 | |
| 		if(*((volatile int *) (&lk->sl)) == 0) {
 | |
| 			if(!CAS_LOCK(&lk->sl)) {
 | |
| 				lk->threadid = mythreadid;
 | |
| 				lk->c = 1;
 | |
| 				return 0;
 | |
| 			}
 | |
| 		} else if(EQ_OWNER(lk->threadid, mythreadid)) {
 | |
| 			++lk->c;
 | |
| 			return 0;
 | |
| 		}
 | |
| 		if((++spins & SPINS_PER_YIELD) == 0) {
 | |
| 			SPIN_LOCK_YIELD;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static FORCEINLINE int recursive_try_lock(MLOCK_T * lk)
 | |
| {
 | |
| 	THREAD_ID_T mythreadid = CURRENT_THREAD;
 | |
| 	if(*((volatile int *) (&lk->sl)) == 0) {
 | |
| 		if(!CAS_LOCK(&lk->sl)) {
 | |
| 			lk->threadid = mythreadid;
 | |
| 			lk->c = 1;
 | |
| 			return 1;
 | |
| 		}
 | |
| 	} else if(EQ_OWNER(lk->threadid, mythreadid)) {
 | |
| 		++lk->c;
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #define RELEASE_LOCK(lk)      recursive_release_lock(lk)
 | |
| #define TRY_LOCK(lk)          recursive_try_lock(lk)
 | |
| #define ACQUIRE_LOCK(lk)      recursive_acquire_lock(lk)
 | |
| #define INITIAL_LOCK(lk)      ((lk)->threadid = (THREAD_ID_T)0, (lk)->sl = 0, (lk)->c = 0)
 | |
| #define DESTROY_LOCK(lk)      (0)
 | |
| #endif /* USE_RECURSIVE_LOCKS */
 | |
| 
 | |
| #elif defined(WIN32)		/* Win32 critical sections */
 | |
| #define MLOCK_T               CRITICAL_SECTION
 | |
| #define ACQUIRE_LOCK(lk)      (EnterCriticalSection(lk), 0)
 | |
| #define RELEASE_LOCK(lk)      LeaveCriticalSection(lk)
 | |
| #define TRY_LOCK(lk)          TryEnterCriticalSection(lk)
 | |
| #define INITIAL_LOCK(lk)      (!InitializeCriticalSectionAndSpinCount((lk), 0x80000000|4000))
 | |
| #define DESTROY_LOCK(lk)      (DeleteCriticalSection(lk), 0)
 | |
| #define NEED_GLOBAL_LOCK_INIT
 | |
| 
 | |
| static MLOCK_T malloc_global_mutex;
 | |
| static volatile LONG malloc_global_mutex_status;
 | |
| 
 | |
| /* Use spin loop to initialize global lock */
 | |
| static void init_malloc_global_mutex()
 | |
| {
 | |
| 	for(;;) {
 | |
| 		long stat = malloc_global_mutex_status;
 | |
| 		if(stat > 0)
 | |
| 			return;
 | |
| 		/* transition to < 0 while initializing, then to > 0) */
 | |
| 		if(stat == 0 && interlockedcompareexchange(&malloc_global_mutex_status, (LONG) - 1, (LONG) 0) == 0) {
 | |
| 			InitializeCriticalSection(&malloc_global_mutex);
 | |
| 			interlockedexchange(&malloc_global_mutex_status, (LONG) 1);
 | |
| 			return;
 | |
| 		}
 | |
| 		SleepEx(0, FALSE);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #else /* pthreads-based locks */
 | |
| #define MLOCK_T               pthread_mutex_t
 | |
| #define ACQUIRE_LOCK(lk)      pthread_mutex_lock(lk)
 | |
| #define RELEASE_LOCK(lk)      pthread_mutex_unlock(lk)
 | |
| #define TRY_LOCK(lk)          (!pthread_mutex_trylock(lk))
 | |
| #define INITIAL_LOCK(lk)      pthread_init_lock(lk)
 | |
| #define DESTROY_LOCK(lk)      pthread_mutex_destroy(lk)
 | |
| 
 | |
| #if defined(USE_RECURSIVE_LOCKS) && USE_RECURSIVE_LOCKS != 0 && defined(linux) && !defined(PTHREAD_MUTEX_RECURSIVE)
 | |
| /* Cope with old-style linux recursive lock initialization by adding */
 | |
| /* skipped internal declaration from pthread.h */
 | |
| extern int pthread_mutexattr_setkind_np __P((pthread_mutexattr_t * __attr, int __kind));
 | |
| #define PTHREAD_MUTEX_RECURSIVE PTHREAD_MUTEX_RECURSIVE_NP
 | |
| #define pthread_mutexattr_settype(x,y) pthread_mutexattr_setkind_np(x,y)
 | |
| #endif /* USE_RECURSIVE_LOCKS ... */
 | |
| 
 | |
| static MLOCK_T malloc_global_mutex = PTHREAD_MUTEX_INITIALIZER;
 | |
| 
 | |
| static int pthread_init_lock(MLOCK_T * lk)
 | |
| {
 | |
| 	pthread_mutexattr_t attr;
 | |
| 	if(pthread_mutexattr_init(&attr))
 | |
| 		return 1;
 | |
| #if defined(USE_RECURSIVE_LOCKS) && USE_RECURSIVE_LOCKS != 0
 | |
| 	if(pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE))
 | |
| 		return 1;
 | |
| #endif
 | |
| 	if(pthread_mutex_init(lk, &attr))
 | |
| 		return 1;
 | |
| 	if(pthread_mutexattr_destroy(&attr))
 | |
| 		return 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #endif /* ... lock types ... */
 | |
| 
 | |
| /* Common code for all lock types */
 | |
| #define USE_LOCK_BIT               (2U)
 | |
| 
 | |
| #ifndef ACQUIRE_MALLOC_GLOBAL_LOCK
 | |
| #define ACQUIRE_MALLOC_GLOBAL_LOCK()  ACQUIRE_LOCK(&malloc_global_mutex);
 | |
| #endif
 | |
| 
 | |
| #ifndef RELEASE_MALLOC_GLOBAL_LOCK
 | |
| #define RELEASE_MALLOC_GLOBAL_LOCK()  RELEASE_LOCK(&malloc_global_mutex);
 | |
| #endif
 | |
| 
 | |
| #endif /* USE_LOCKS */
 | |
| 
 | |
| /* -----------------------  Chunk representations ------------------------ */
 | |
| 
 | |
| /*
 | |
|   (The following includes lightly edited explanations by Colin Plumb.)
 | |
| 
 | |
|   The malloc_chunk declaration below is misleading (but accurate and
 | |
|   necessary).  It declares a "view" into memory allowing access to
 | |
|   necessary fields at known offsets from a given base.
 | |
| 
 | |
|   Chunks of memory are maintained using a `boundary tag' method as
 | |
|   originally described by Knuth.  (See the paper by Paul Wilson
 | |
|   ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a survey of such
 | |
|   techniques.)  Sizes of free chunks are stored both in the front of
 | |
|   each chunk and at the end.  This makes consolidating fragmented
 | |
|   chunks into bigger chunks fast.  The head fields also hold bits
 | |
|   representing whether chunks are free or in use.
 | |
| 
 | |
|   Here are some pictures to make it clearer.  They are "exploded" to
 | |
|   show that the state of a chunk can be thought of as extending from
 | |
|   the high 31 bits of the head field of its header through the
 | |
|   prev_foot and PINUSE_BIT bit of the following chunk header.
 | |
| 
 | |
|   A chunk that's in use looks like:
 | |
| 
 | |
|    chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | |
|            | Size of previous chunk (if P = 0)                             |
 | |
|            +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | |
|          +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P|
 | |
|          | Size of this chunk                                         1| +-+
 | |
|    mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | |
|          |                                                               |
 | |
|          +-                                                             -+
 | |
|          |                                                               |
 | |
|          +-                                                             -+
 | |
|          |                                                               :
 | |
|          +-      size - sizeof(size_t) available payload bytes          -+
 | |
|          :                                                               |
 | |
|  chunk-> +-                                                             -+
 | |
|          |                                                               |
 | |
|          +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | |
|        +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |1|
 | |
|        | Size of next chunk (may or may not be in use)               | +-+
 | |
|  mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | |
| 
 | |
|     And if it's free, it looks like this:
 | |
| 
 | |
|    chunk-> +-                                                             -+
 | |
|            | User payload (must be in use, or we would have merged!)       |
 | |
|            +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | |
|          +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P|
 | |
|          | Size of this chunk                                         0| +-+
 | |
|    mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | |
|          | Next pointer                                                  |
 | |
|          +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | |
|          | Prev pointer                                                  |
 | |
|          +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | |
|          |                                                               :
 | |
|          +-      size - sizeof(struct chunk) unused bytes               -+
 | |
|          :                                                               |
 | |
|  chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | |
|          | Size of this chunk                                            |
 | |
|          +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | |
|        +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |0|
 | |
|        | Size of next chunk (must be in use, or we would have merged)| +-+
 | |
|  mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | |
|        |                                                               :
 | |
|        +- User payload                                                -+
 | |
|        :                                                               |
 | |
|        +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | |
|                                                                      |0|
 | |
|                                                                      +-+
 | |
|   Note that since we always merge adjacent free chunks, the chunks
 | |
|   adjacent to a free chunk must be in use.
 | |
| 
 | |
|   Given a pointer to a chunk (which can be derived trivially from the
 | |
|   payload pointer) we can, in O(1) time, find out whether the adjacent
 | |
|   chunks are free, and if so, unlink them from the lists that they
 | |
|   are on and merge them with the current chunk.
 | |
| 
 | |
|   Chunks always begin on even word boundaries, so the mem portion
 | |
|   (which is returned to the user) is also on an even word boundary, and
 | |
|   thus at least double-word aligned.
 | |
| 
 | |
|   The P (PINUSE_BIT) bit, stored in the unused low-order bit of the
 | |
|   chunk size (which is always a multiple of two words), is an in-use
 | |
|   bit for the *previous* chunk.  If that bit is *clear*, then the
 | |
|   word before the current chunk size contains the previous chunk
 | |
|   size, and can be used to find the front of the previous chunk.
 | |
|   The very first chunk allocated always has this bit set, preventing
 | |
|   access to non-existent (or non-owned) memory. If pinuse is set for
 | |
|   any given chunk, then you CANNOT determine the size of the
 | |
|   previous chunk, and might even get a memory addressing fault when
 | |
|   trying to do so.
 | |
| 
 | |
|   The C (CINUSE_BIT) bit, stored in the unused second-lowest bit of
 | |
|   the chunk size redundantly records whether the current chunk is
 | |
|   inuse (unless the chunk is mmapped). This redundancy enables usage
 | |
|   checks within free and realloc, and reduces indirection when freeing
 | |
|   and consolidating chunks.
 | |
| 
 | |
|   Each freshly allocated chunk must have both cinuse and pinuse set.
 | |
|   That is, each allocated chunk borders either a previously allocated
 | |
|   and still in-use chunk, or the base of its memory arena. This is
 | |
|   ensured by making all allocations from the `lowest' part of any
 | |
|   found chunk.  Further, no free chunk physically borders another one,
 | |
|   so each free chunk is known to be preceded and followed by either
 | |
|   inuse chunks or the ends of memory.
 | |
| 
 | |
|   Note that the `foot' of the current chunk is actually represented
 | |
|   as the prev_foot of the NEXT chunk. This makes it easier to
 | |
|   deal with alignments etc but can be very confusing when trying
 | |
|   to extend or adapt this code.
 | |
| 
 | |
|   The exceptions to all this are
 | |
| 
 | |
|      1. The special chunk `top' is the top-most available chunk (i.e.,
 | |
|         the one bordering the end of available memory). It is treated
 | |
|         specially.  Top is never included in any bin, is used only if
 | |
|         no other chunk is available, and is released back to the
 | |
|         system if it is very large (see M_TRIM_THRESHOLD).  In effect,
 | |
|         the top chunk is treated as larger (and thus less well
 | |
|         fitting) than any other available chunk.  The top chunk
 | |
|         doesn't update its trailing size field since there is no next
 | |
|         contiguous chunk that would have to index off it. However,
 | |
|         space is still allocated for it (TOP_FOOT_SIZE) to enable
 | |
|         separation or merging when space is extended.
 | |
| 
 | |
|      3. Chunks allocated via mmap, have both cinuse and pinuse bits
 | |
|         cleared in their head fields.  Because they are allocated
 | |
|         one-by-one, each must carry its own prev_foot field, which is
 | |
|         also used to hold the offset this chunk has within its mmapped
 | |
|         region, which is needed to preserve alignment. Each mmapped
 | |
|         chunk is trailed by the first two fields of a fake next-chunk
 | |
|         for sake of usage checks.
 | |
| 
 | |
| */
 | |
| 
 | |
| struct malloc_chunk {
 | |
| 	size_t prev_foot;	/* Size of previous chunk (if free).  */
 | |
| 	size_t head;		/* Size and inuse bits. */
 | |
| 	struct malloc_chunk *fd;	/* double links -- used only if free. */
 | |
| 	struct malloc_chunk *bk;
 | |
| };
 | |
| 
 | |
| typedef struct malloc_chunk mchunk;
 | |
| typedef struct malloc_chunk *mchunkptr;
 | |
| typedef struct malloc_chunk *sbinptr;	/* The type of bins of chunks */
 | |
| typedef unsigned int bindex_t;	/* Described below */
 | |
| typedef unsigned int binmap_t;	/* Described below */
 | |
| typedef unsigned int flag_t;	/* The type of various bit flag sets */
 | |
| 
 | |
| /* ------------------- Chunks sizes and alignments ----------------------- */
 | |
| 
 | |
| #define MCHUNK_SIZE         (sizeof(mchunk))
 | |
| 
 | |
| #if FOOTERS
 | |
| #define CHUNK_OVERHEAD      (TWO_SIZE_T_SIZES)
 | |
| #else /* FOOTERS */
 | |
| #define CHUNK_OVERHEAD      (SIZE_T_SIZE)
 | |
| #endif /* FOOTERS */
 | |
| 
 | |
| /* MMapped chunks need a second word of overhead ... */
 | |
| #define MMAP_CHUNK_OVERHEAD (TWO_SIZE_T_SIZES)
 | |
| /* ... and additional padding for fake next-chunk at foot */
 | |
| #define MMAP_FOOT_PAD       (FOUR_SIZE_T_SIZES)
 | |
| 
 | |
| /* The smallest size we can malloc is an aligned minimal chunk */
 | |
| #define MIN_CHUNK_SIZE\
 | |
|   ((MCHUNK_SIZE + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK)
 | |
| 
 | |
| /* conversion from malloc headers to user pointers, and back */
 | |
| #define chunk2mem(p)        ((void*)((char*)(p)       + TWO_SIZE_T_SIZES))
 | |
| #define mem2chunk(mem)      ((mchunkptr)((char*)(mem) - TWO_SIZE_T_SIZES))
 | |
| /* chunk associated with aligned address A */
 | |
| #define align_as_chunk(A)   (mchunkptr)((A) + align_offset(chunk2mem(A)))
 | |
| 
 | |
| /* Bounds on request (not chunk) sizes. */
 | |
| #define MAX_REQUEST         ((-MIN_CHUNK_SIZE) << 2)
 | |
| #define MIN_REQUEST         (MIN_CHUNK_SIZE - CHUNK_OVERHEAD - SIZE_T_ONE)
 | |
| 
 | |
| /* pad request bytes into a usable size */
 | |
| #define pad_request(req) \
 | |
|    (((req) + CHUNK_OVERHEAD + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK)
 | |
| 
 | |
| /* pad request, checking for minimum (but not maximum) */
 | |
| #define request2size(req) \
 | |
|   (((req) < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(req))
 | |
| 
 | |
| 
 | |
| /* ------------------ Operations on head and foot fields ----------------- */
 | |
| 
 | |
| /*
 | |
|   The head field of a chunk is or'ed with PINUSE_BIT when previous
 | |
|   adjacent chunk in use, and or'ed with CINUSE_BIT if this chunk is in
 | |
|   use, unless mmapped, in which case both bits are cleared.
 | |
| 
 | |
|   FLAG4_BIT is not used by this malloc, but might be useful in extensions.
 | |
| */
 | |
| 
 | |
| #define PINUSE_BIT          (SIZE_T_ONE)
 | |
| #define CINUSE_BIT          (SIZE_T_TWO)
 | |
| #define FLAG4_BIT           (SIZE_T_FOUR)
 | |
| #define INUSE_BITS          (PINUSE_BIT|CINUSE_BIT)
 | |
| #define FLAG_BITS           (PINUSE_BIT|CINUSE_BIT|FLAG4_BIT)
 | |
| 
 | |
| /* Head value for fenceposts */
 | |
| #define FENCEPOST_HEAD      (INUSE_BITS|SIZE_T_SIZE)
 | |
| 
 | |
| /* extraction of fields from head words */
 | |
| #define cinuse(p)           ((p)->head & CINUSE_BIT)
 | |
| #define pinuse(p)           ((p)->head & PINUSE_BIT)
 | |
| #define flag4inuse(p)       ((p)->head & FLAG4_BIT)
 | |
| #define is_inuse(p)         (((p)->head & INUSE_BITS) != PINUSE_BIT)
 | |
| #define is_mmapped(p)       (((p)->head & INUSE_BITS) == 0)
 | |
| 
 | |
| #define chunksize(p)        ((p)->head & ~(FLAG_BITS))
 | |
| 
 | |
| #define clear_pinuse(p)     ((p)->head &= ~PINUSE_BIT)
 | |
| #define set_flag4(p)        ((p)->head |= FLAG4_BIT)
 | |
| #define clear_flag4(p)      ((p)->head &= ~FLAG4_BIT)
 | |
| 
 | |
| /* Treat space at ptr +/- offset as a chunk */
 | |
| #define chunk_plus_offset(p, s)  ((mchunkptr)(((char*)(p)) + (s)))
 | |
| #define chunk_minus_offset(p, s) ((mchunkptr)(((char*)(p)) - (s)))
 | |
| 
 | |
| /* Ptr to next or previous physical malloc_chunk. */
 | |
| #define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->head & ~FLAG_BITS)))
 | |
| #define prev_chunk(p) ((mchunkptr)( ((char*)(p)) - ((p)->prev_foot) ))
 | |
| 
 | |
| /* extract next chunk's pinuse bit */
 | |
| #define next_pinuse(p)  ((next_chunk(p)->head) & PINUSE_BIT)
 | |
| 
 | |
| /* Get/set size at footer */
 | |
| #define get_foot(p, s)  (((mchunkptr)((char*)(p) + (s)))->prev_foot)
 | |
| #define set_foot(p, s)  (((mchunkptr)((char*)(p) + (s)))->prev_foot = (s))
 | |
| 
 | |
| /* Set size, pinuse bit, and foot */
 | |
| #define set_size_and_pinuse_of_free_chunk(p, s)\
 | |
|   ((p)->head = (s|PINUSE_BIT), set_foot(p, s))
 | |
| 
 | |
| /* Set size, pinuse bit, foot, and clear next pinuse */
 | |
| #define set_free_with_pinuse(p, s, n)\
 | |
|   (clear_pinuse(n), set_size_and_pinuse_of_free_chunk(p, s))
 | |
| 
 | |
| /* Get the internal overhead associated with chunk p */
 | |
| #define overhead_for(p)\
 | |
|  (is_mmapped(p)? MMAP_CHUNK_OVERHEAD : CHUNK_OVERHEAD)
 | |
| 
 | |
| /* Return true if malloced space is not necessarily cleared */
 | |
| #if MMAP_CLEARS
 | |
| #define calloc_must_clear(p) (!is_mmapped(p))
 | |
| #else /* MMAP_CLEARS */
 | |
| #define calloc_must_clear(p) (1)
 | |
| #endif /* MMAP_CLEARS */
 | |
| 
 | |
| /* ---------------------- Overlaid data structures ----------------------- */
 | |
| 
 | |
| /*
 | |
|   When chunks are not in use, they are treated as nodes of either
 | |
|   lists or trees.
 | |
| 
 | |
|   "Small"  chunks are stored in circular doubly-linked lists, and look
 | |
|   like this:
 | |
| 
 | |
|     chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | |
|             |             Size of previous chunk                            |
 | |
|             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | |
|     `head:' |             Size of chunk, in bytes                         |P|
 | |
|       mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | |
|             |             Forward pointer to next chunk in list             |
 | |
|             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | |
|             |             Back pointer to previous chunk in list            |
 | |
|             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | |
|             |             Unused space (may be 0 bytes long)                .
 | |
|             .                                                               .
 | |
|             .                                                               |
 | |
| nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | |
|     `foot:' |             Size of chunk, in bytes                           |
 | |
|             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | |
| 
 | |
|   Larger chunks are kept in a form of bitwise digital trees (aka
 | |
|   tries) keyed on chunksizes.  Because malloc_tree_chunks are only for
 | |
|   free chunks greater than 256 bytes, their size doesn't impose any
 | |
|   constraints on user chunk sizes.  Each node looks like:
 | |
| 
 | |
|     chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | |
|             |             Size of previous chunk                            |
 | |
|             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | |
|     `head:' |             Size of chunk, in bytes                         |P|
 | |
|       mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | |
|             |             Forward pointer to next chunk of same size        |
 | |
|             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | |
|             |             Back pointer to previous chunk of same size       |
 | |
|             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | |
|             |             Pointer to left child (child[0])                  |
 | |
|             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | |
|             |             Pointer to right child (child[1])                 |
 | |
|             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | |
|             |             Pointer to parent                                 |
 | |
|             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | |
|             |             bin index of this chunk                           |
 | |
|             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | |
|             |             Unused space                                      .
 | |
|             .                                                               |
 | |
| nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | |
|     `foot:' |             Size of chunk, in bytes                           |
 | |
|             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | |
| 
 | |
|   Each tree holding treenodes is a tree of unique chunk sizes.  Chunks
 | |
|   of the same size are arranged in a circularly-linked list, with only
 | |
|   the oldest chunk (the next to be used, in our FIFO ordering)
 | |
|   actually in the tree.  (Tree members are distinguished by a non-null
 | |
|   parent pointer.)  If a chunk with the same size an an existing node
 | |
|   is inserted, it is linked off the existing node using pointers that
 | |
|   work in the same way as fd/bk pointers of small chunks.
 | |
| 
 | |
|   Each tree contains a power of 2 sized range of chunk sizes (the
 | |
|   smallest is 0x100 <= x < 0x180), which is is divided in half at each
 | |
|   tree level, with the chunks in the smaller half of the range (0x100
 | |
|   <= x < 0x140 for the top nose) in the left subtree and the larger
 | |
|   half (0x140 <= x < 0x180) in the right subtree.  This is, of course,
 | |
|   done by inspecting individual bits.
 | |
| 
 | |
|   Using these rules, each node's left subtree contains all smaller
 | |
|   sizes than its right subtree.  However, the node at the root of each
 | |
|   subtree has no particular ordering relationship to either.  (The
 | |
|   dividing line between the subtree sizes is based on trie relation.)
 | |
|   If we remove the last chunk of a given size from the interior of the
 | |
|   tree, we need to replace it with a leaf node.  The tree ordering
 | |
|   rules permit a node to be replaced by any leaf below it.
 | |
| 
 | |
|   The smallest chunk in a tree (a common operation in a best-fit
 | |
|   allocator) can be found by walking a path to the leftmost leaf in
 | |
|   the tree.  Unlike a usual binary tree, where we follow left child
 | |
|   pointers until we reach a null, here we follow the right child
 | |
|   pointer any time the left one is null, until we reach a leaf with
 | |
|   both child pointers null. The smallest chunk in the tree will be
 | |
|   somewhere along that path.
 | |
| 
 | |
|   The worst case number of steps to add, find, or remove a node is
 | |
|   bounded by the number of bits differentiating chunks within
 | |
|   bins. Under current bin calculations, this ranges from 6 up to 21
 | |
|   (for 32 bit sizes) or up to 53 (for 64 bit sizes). The typical case
 | |
|   is of course much better.
 | |
| */
 | |
| 
 | |
| struct malloc_tree_chunk {
 | |
| 	/* The first four fields must be compatible with malloc_chunk */
 | |
| 	size_t prev_foot;
 | |
| 	size_t head;
 | |
| 	struct malloc_tree_chunk *fd;
 | |
| 	struct malloc_tree_chunk *bk;
 | |
| 
 | |
| 	struct malloc_tree_chunk *child[2];
 | |
| 	struct malloc_tree_chunk *parent;
 | |
| 	bindex_t index;
 | |
| };
 | |
| 
 | |
| typedef struct malloc_tree_chunk tchunk;
 | |
| typedef struct malloc_tree_chunk *tchunkptr;
 | |
| typedef struct malloc_tree_chunk *tbinptr;	/* The type of bins of trees */
 | |
| 
 | |
| /* A little helper macro for trees */
 | |
| #define leftmost_child(t) ((t)->child[0] != 0? (t)->child[0] : (t)->child[1])
 | |
| 
 | |
| /* ----------------------------- Segments -------------------------------- */
 | |
| 
 | |
| /*
 | |
|   Each malloc space may include non-contiguous segments, held in a
 | |
|   list headed by an embedded malloc_segment record representing the
 | |
|   top-most space. Segments also include flags holding properties of
 | |
|   the space. Large chunks that are directly allocated by mmap are not
 | |
|   included in this list. They are instead independently created and
 | |
|   destroyed without otherwise keeping track of them.
 | |
| 
 | |
|   Segment management mainly comes into play for spaces allocated by
 | |
|   MMAP.  Any call to MMAP might or might not return memory that is
 | |
|   adjacent to an existing segment.  MORECORE normally contiguously
 | |
|   extends the current space, so this space is almost always adjacent,
 | |
|   which is simpler and faster to deal with. (This is why MORECORE is
 | |
|   used preferentially to MMAP when both are available -- see
 | |
|   sys_alloc.)  When allocating using MMAP, we don't use any of the
 | |
|   hinting mechanisms (inconsistently) supported in various
 | |
|   implementations of unix mmap, or distinguish reserving from
 | |
|   committing memory. Instead, we just ask for space, and exploit
 | |
|   contiguity when we get it.  It is probably possible to do
 | |
|   better than this on some systems, but no general scheme seems
 | |
|   to be significantly better.
 | |
| 
 | |
|   Management entails a simpler variant of the consolidation scheme
 | |
|   used for chunks to reduce fragmentation -- new adjacent memory is
 | |
|   normally prepended or appended to an existing segment. However,
 | |
|   there are limitations compared to chunk consolidation that mostly
 | |
|   reflect the fact that segment processing is relatively infrequent
 | |
|   (occurring only when getting memory from system) and that we
 | |
|   don't expect to have huge numbers of segments:
 | |
| 
 | |
|   * Segments are not indexed, so traversal requires linear scans.  (It
 | |
|     would be possible to index these, but is not worth the extra
 | |
|     overhead and complexity for most programs on most platforms.)
 | |
|   * New segments are only appended to old ones when holding top-most
 | |
|     memory; if they cannot be prepended to others, they are held in
 | |
|     different segments.
 | |
| 
 | |
|   Except for the top-most segment of an mstate, each segment record
 | |
|   is kept at the tail of its segment. Segments are added by pushing
 | |
|   segment records onto the list headed by &mstate.seg for the
 | |
|   containing mstate.
 | |
| 
 | |
|   Segment flags control allocation/merge/deallocation policies:
 | |
|   * If EXTERN_BIT set, then we did not allocate this segment,
 | |
|     and so should not try to deallocate or merge with others.
 | |
|     (This currently holds only for the initial segment passed
 | |
|     into create_mspace_with_base.)
 | |
|   * If USE_MMAP_BIT set, the segment may be merged with
 | |
|     other surrounding mmapped segments and trimmed/de-allocated
 | |
|     using munmap.
 | |
|   * If neither bit is set, then the segment was obtained using
 | |
|     MORECORE so can be merged with surrounding MORECORE'd segments
 | |
|     and deallocated/trimmed using MORECORE with negative arguments.
 | |
| */
 | |
| 
 | |
| struct malloc_segment {
 | |
| 	char *base;		/* base address */
 | |
| 	size_t size;		/* allocated size */
 | |
| 	struct malloc_segment *next;	/* ptr to next segment */
 | |
| 	flag_t sflags;		/* mmap and extern flag */
 | |
| };
 | |
| 
 | |
| #define is_mmapped_segment(S)  ((S)->sflags & USE_MMAP_BIT)
 | |
| #define is_extern_segment(S)   ((S)->sflags & EXTERN_BIT)
 | |
| 
 | |
| typedef struct malloc_segment msegment;
 | |
| typedef struct malloc_segment *msegmentptr;
 | |
| 
 | |
| /* ---------------------------- malloc_state ----------------------------- */
 | |
| 
 | |
| /*
 | |
|    A malloc_state holds all of the bookkeeping for a space.
 | |
|    The main fields are:
 | |
| 
 | |
|   Top
 | |
|     The topmost chunk of the currently active segment. Its size is
 | |
|     cached in topsize.  The actual size of topmost space is
 | |
|     topsize+TOP_FOOT_SIZE, which includes space reserved for adding
 | |
|     fenceposts and segment records if necessary when getting more
 | |
|     space from the system.  The size at which to autotrim top is
 | |
|     cached from mparams in trim_check, except that it is disabled if
 | |
|     an autotrim fails.
 | |
| 
 | |
|   Designated victim (dv)
 | |
|     This is the preferred chunk for servicing small requests that
 | |
|     don't have exact fits.  It is normally the chunk split off most
 | |
|     recently to service another small request.  Its size is cached in
 | |
|     dvsize. The link fields of this chunk are not maintained since it
 | |
|     is not kept in a bin.
 | |
| 
 | |
|   SmallBins
 | |
|     An array of bin headers for free chunks.  These bins hold chunks
 | |
|     with sizes less than MIN_LARGE_SIZE bytes. Each bin contains
 | |
|     chunks of all the same size, spaced 8 bytes apart.  To simplify
 | |
|     use in double-linked lists, each bin header acts as a malloc_chunk
 | |
|     pointing to the real first node, if it exists (else pointing to
 | |
|     itself).  This avoids special-casing for headers.  But to avoid
 | |
|     waste, we allocate only the fd/bk pointers of bins, and then use
 | |
|     repositioning tricks to treat these as the fields of a chunk.
 | |
| 
 | |
|   TreeBins
 | |
|     Treebins are pointers to the roots of trees holding a range of
 | |
|     sizes. There are 2 equally spaced treebins for each power of two
 | |
|     from TREE_SHIFT to TREE_SHIFT+16. The last bin holds anything
 | |
|     larger.
 | |
| 
 | |
|   Bin maps
 | |
|     There is one bit map for small bins ("smallmap") and one for
 | |
|     treebins ("treemap).  Each bin sets its bit when non-empty, and
 | |
|     clears the bit when empty.  Bit operations are then used to avoid
 | |
|     bin-by-bin searching -- nearly all "search" is done without ever
 | |
|     looking at bins that won't be selected.  The bit maps
 | |
|     conservatively use 32 bits per map word, even if on 64bit system.
 | |
|     For a good description of some of the bit-based techniques used
 | |
|     here, see Henry S. Warren Jr's book "Hacker's Delight" (and
 | |
|     supplement at http://hackersdelight.org/). Many of these are
 | |
|     intended to reduce the branchiness of paths through malloc etc, as
 | |
|     well as to reduce the number of memory locations read or written.
 | |
| 
 | |
|   Segments
 | |
|     A list of segments headed by an embedded malloc_segment record
 | |
|     representing the initial space.
 | |
| 
 | |
|   Address check support
 | |
|     The least_addr field is the least address ever obtained from
 | |
|     MORECORE or MMAP. Attempted frees and reallocs of any address less
 | |
|     than this are trapped (unless INSECURE is defined).
 | |
| 
 | |
|   Magic tag
 | |
|     A cross-check field that should always hold same value as mparams.magic.
 | |
| 
 | |
|   Max allowed footprint
 | |
|     The maximum allowed bytes to allocate from system (zero means no limit)
 | |
| 
 | |
|   Flags
 | |
|     Bits recording whether to use MMAP, locks, or contiguous MORECORE
 | |
| 
 | |
|   Statistics
 | |
|     Each space keeps track of current and maximum system memory
 | |
|     obtained via MORECORE or MMAP.
 | |
| 
 | |
|   Trim support
 | |
|     Fields holding the amount of unused topmost memory that should trigger
 | |
|     trimming, and a counter to force periodic scanning to release unused
 | |
|     non-topmost segments.
 | |
| 
 | |
|   Locking
 | |
|     If USE_LOCKS is defined, the "mutex" lock is acquired and released
 | |
|     around every public call using this mspace.
 | |
| 
 | |
|   Extension support
 | |
|     A void* pointer and a size_t field that can be used to help implement
 | |
|     extensions to this malloc.
 | |
| */
 | |
| 
 | |
| /* Bin types, widths and sizes */
 | |
| #define NSMALLBINS        (32U)
 | |
| #define NTREEBINS         (32U)
 | |
| #define SMALLBIN_SHIFT    (3U)
 | |
| #define SMALLBIN_WIDTH    (SIZE_T_ONE << SMALLBIN_SHIFT)
 | |
| #define TREEBIN_SHIFT     (8U)
 | |
| #define MIN_LARGE_SIZE    (SIZE_T_ONE << TREEBIN_SHIFT)
 | |
| #define MAX_SMALL_SIZE    (MIN_LARGE_SIZE - SIZE_T_ONE)
 | |
| #define MAX_SMALL_REQUEST (MAX_SMALL_SIZE - CHUNK_ALIGN_MASK - CHUNK_OVERHEAD)
 | |
| 
 | |
| struct malloc_state {
 | |
| 	binmap_t smallmap;
 | |
| 	binmap_t treemap;
 | |
| 	size_t dvsize;
 | |
| 	size_t topsize;
 | |
| 	char *least_addr;
 | |
| 	mchunkptr dv;
 | |
| 	mchunkptr top;
 | |
| 	size_t trim_check;
 | |
| 	size_t release_checks;
 | |
| 	size_t magic;
 | |
| 	mchunkptr smallbins[(NSMALLBINS + 1) * 2];
 | |
| 	tbinptr treebins[NTREEBINS];
 | |
| 	size_t footprint;
 | |
| 	size_t max_footprint;
 | |
| 	size_t footprint_limit;	/* zero means no limit */
 | |
| 	flag_t mflags;
 | |
| #if USE_LOCKS
 | |
| 	MLOCK_T mutex;		/* locate lock among fields that rarely change */
 | |
| #endif				/* USE_LOCKS */
 | |
| 	msegment seg;
 | |
| 	void *extp;		/* Unused but available for extensions */
 | |
| 	size_t exts;
 | |
| };
 | |
| 
 | |
| typedef struct malloc_state *mstate;
 | |
| 
 | |
| /* ------------- Global malloc_state and malloc_params ------------------- */
 | |
| 
 | |
| /*
 | |
|   malloc_params holds global properties, including those that can be
 | |
|   dynamically set using mallopt. There is a single instance, mparams,
 | |
|   initialized in init_mparams. Note that the non-zeroness of "magic"
 | |
|   also serves as an initialization flag.
 | |
| */
 | |
| 
 | |
| struct malloc_params {
 | |
| 	size_t magic;
 | |
| 	size_t page_size;
 | |
| 	size_t granularity;
 | |
| 	size_t mmap_threshold;
 | |
| 	size_t trim_threshold;
 | |
| 	flag_t default_mflags;
 | |
| };
 | |
| 
 | |
| static struct malloc_params mparams;
 | |
| 
 | |
| /* Ensure mparams initialized */
 | |
| #define ensure_initialization() (void)(mparams.magic != 0 || init_mparams())
 | |
| 
 | |
| #if !ONLY_MSPACES
 | |
| 
 | |
| /* The global malloc_state used for all non-"mspace" calls */
 | |
| static struct malloc_state _gm_;
 | |
| #define gm                 (&_gm_)
 | |
| #define is_global(M)       ((M) == &_gm_)
 | |
| 
 | |
| #endif /* !ONLY_MSPACES */
 | |
| 
 | |
| #define is_initialized(M)  ((M)->top != 0)
 | |
| 
 | |
| /* -------------------------- system alloc setup ------------------------- */
 | |
| 
 | |
| /* Operations on mflags */
 | |
| 
 | |
| #define use_lock(M)           ((M)->mflags &   USE_LOCK_BIT)
 | |
| #define enable_lock(M)        ((M)->mflags |=  USE_LOCK_BIT)
 | |
| #if USE_LOCKS
 | |
| #define disable_lock(M)       ((M)->mflags &= ~USE_LOCK_BIT)
 | |
| #else
 | |
| #define disable_lock(M)
 | |
| #endif
 | |
| 
 | |
| #define use_mmap(M)           ((M)->mflags &   USE_MMAP_BIT)
 | |
| #define enable_mmap(M)        ((M)->mflags |=  USE_MMAP_BIT)
 | |
| #if HAVE_MMAP
 | |
| #define disable_mmap(M)       ((M)->mflags &= ~USE_MMAP_BIT)
 | |
| #else
 | |
| #define disable_mmap(M)
 | |
| #endif
 | |
| 
 | |
| #define use_noncontiguous(M)  ((M)->mflags &   USE_NONCONTIGUOUS_BIT)
 | |
| #define disable_contiguous(M) ((M)->mflags |=  USE_NONCONTIGUOUS_BIT)
 | |
| 
 | |
| #define set_lock(M,L)\
 | |
|  ((M)->mflags = (L)?\
 | |
|   ((M)->mflags | USE_LOCK_BIT) :\
 | |
|   ((M)->mflags & ~USE_LOCK_BIT))
 | |
| 
 | |
| /* page-align a size */
 | |
| #define page_align(S)\
 | |
|  (((S) + (mparams.page_size - SIZE_T_ONE)) & ~(mparams.page_size - SIZE_T_ONE))
 | |
| 
 | |
| /* granularity-align a size */
 | |
| #define granularity_align(S)\
 | |
|   (((S) + (mparams.granularity - SIZE_T_ONE))\
 | |
|    & ~(mparams.granularity - SIZE_T_ONE))
 | |
| 
 | |
| 
 | |
| /* For mmap, use granularity alignment on windows, else page-align */
 | |
| #ifdef WIN32
 | |
| #define mmap_align(S) granularity_align(S)
 | |
| #else
 | |
| #define mmap_align(S) page_align(S)
 | |
| #endif
 | |
| 
 | |
| /* For sys_alloc, enough padding to ensure can malloc request on success */
 | |
| #define SYS_ALLOC_PADDING (TOP_FOOT_SIZE + MALLOC_ALIGNMENT)
 | |
| 
 | |
| #define is_page_aligned(S)\
 | |
|    (((size_t)(S) & (mparams.page_size - SIZE_T_ONE)) == 0)
 | |
| #define is_granularity_aligned(S)\
 | |
|    (((size_t)(S) & (mparams.granularity - SIZE_T_ONE)) == 0)
 | |
| 
 | |
| /*  True if segment S holds address A */
 | |
| #define segment_holds(S, A)\
 | |
|   ((char*)(A) >= S->base && (char*)(A) < S->base + S->size)
 | |
| 
 | |
| /* Return segment holding given address */
 | |
| static msegmentptr segment_holding(mstate m, char *addr)
 | |
| {
 | |
| 	msegmentptr sp = &m->seg;
 | |
| 	for(;;) {
 | |
| 		if(addr >= sp->base && addr < sp->base + sp->size)
 | |
| 			return sp;
 | |
| 		if((sp = sp->next) == 0)
 | |
| 			return 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Return true if segment contains a segment link */
 | |
| static int has_segment_link(mstate m, msegmentptr ss)
 | |
| {
 | |
| 	msegmentptr sp = &m->seg;
 | |
| 	for(;;) {
 | |
| 		if((char *) sp >= ss->base && (char *) sp < ss->base + ss->size)
 | |
| 			return 1;
 | |
| 		if((sp = sp->next) == 0)
 | |
| 			return 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifndef MORECORE_CANNOT_TRIM
 | |
| #define should_trim(M,s)  ((s) > (M)->trim_check)
 | |
| #else /* MORECORE_CANNOT_TRIM */
 | |
| #define should_trim(M,s)  (0)
 | |
| #endif /* MORECORE_CANNOT_TRIM */
 | |
| 
 | |
| /*
 | |
|   TOP_FOOT_SIZE is padding at the end of a segment, including space
 | |
|   that may be needed to place segment records and fenceposts when new
 | |
|   noncontiguous segments are added.
 | |
| */
 | |
| #define TOP_FOOT_SIZE\
 | |
|   (align_offset(chunk2mem(0))+pad_request(sizeof(struct malloc_segment))+MIN_CHUNK_SIZE)
 | |
| 
 | |
| 
 | |
| /* -------------------------------  Hooks -------------------------------- */
 | |
| 
 | |
| /*
 | |
|   PREACTION should be defined to return 0 on success, and nonzero on
 | |
|   failure. If you are not using locking, you can redefine these to do
 | |
|   anything you like.
 | |
| */
 | |
| 
 | |
| #if USE_LOCKS
 | |
| #define PREACTION(M)  ((use_lock(M))? ACQUIRE_LOCK(&(M)->mutex) : 0)
 | |
| #define POSTACTION(M) { if (use_lock(M)) RELEASE_LOCK(&(M)->mutex); }
 | |
| #else /* USE_LOCKS */
 | |
| 
 | |
| #ifndef PREACTION
 | |
| #define PREACTION(M) (0)
 | |
| #endif /* PREACTION */
 | |
| 
 | |
| #ifndef POSTACTION
 | |
| #define POSTACTION(M)
 | |
| #endif /* POSTACTION */
 | |
| 
 | |
| #endif /* USE_LOCKS */
 | |
| 
 | |
| /*
 | |
|   CORRUPTION_ERROR_ACTION is triggered upon detected bad addresses.
 | |
|   USAGE_ERROR_ACTION is triggered on detected bad frees and
 | |
|   reallocs. The argument p is an address that might have triggered the
 | |
|   fault. It is ignored by the two predefined actions, but might be
 | |
|   useful in custom actions that try to help diagnose errors.
 | |
| */
 | |
| 
 | |
| #if PROCEED_ON_ERROR
 | |
| 
 | |
| /* A count of the number of corruption errors causing resets */
 | |
| int malloc_corruption_error_count;
 | |
| 
 | |
| /* default corruption action */
 | |
| static void reset_on_error(mstate m);
 | |
| 
 | |
| #define CORRUPTION_ERROR_ACTION(m)  reset_on_error(m)
 | |
| #define USAGE_ERROR_ACTION(m, p)
 | |
| 
 | |
| #else /* PROCEED_ON_ERROR */
 | |
| 
 | |
| #ifndef CORRUPTION_ERROR_ACTION
 | |
| #define CORRUPTION_ERROR_ACTION(m) ABORT
 | |
| #endif /* CORRUPTION_ERROR_ACTION */
 | |
| 
 | |
| #ifndef USAGE_ERROR_ACTION
 | |
| #define USAGE_ERROR_ACTION(m,p) ABORT
 | |
| #endif /* USAGE_ERROR_ACTION */
 | |
| 
 | |
| #endif /* PROCEED_ON_ERROR */
 | |
| 
 | |
| 
 | |
| /* -------------------------- Debugging setup ---------------------------- */
 | |
| 
 | |
| #if ! DEBUG
 | |
| 
 | |
| #define check_free_chunk(M,P)
 | |
| #define check_inuse_chunk(M,P)
 | |
| #define check_malloced_chunk(M,P,N)
 | |
| #define check_mmapped_chunk(M,P)
 | |
| #define check_malloc_state(M)
 | |
| #define check_top_chunk(M,P)
 | |
| 
 | |
| #else /* DEBUG */
 | |
| #define check_free_chunk(M,P)       do_check_free_chunk(M,P)
 | |
| #define check_inuse_chunk(M,P)      do_check_inuse_chunk(M,P)
 | |
| #define check_top_chunk(M,P)        do_check_top_chunk(M,P)
 | |
| #define check_malloced_chunk(M,P,N) do_check_malloced_chunk(M,P,N)
 | |
| #define check_mmapped_chunk(M,P)    do_check_mmapped_chunk(M,P)
 | |
| #define check_malloc_state(M)       do_check_malloc_state(M)
 | |
| 
 | |
| static void do_check_any_chunk(mstate m, mchunkptr p);
 | |
| static void do_check_top_chunk(mstate m, mchunkptr p);
 | |
| static void do_check_mmapped_chunk(mstate m, mchunkptr p);
 | |
| static void do_check_inuse_chunk(mstate m, mchunkptr p);
 | |
| static void do_check_free_chunk(mstate m, mchunkptr p);
 | |
| static void do_check_malloced_chunk(mstate m, void *mem, size_t s);
 | |
| static void do_check_tree(mstate m, tchunkptr t);
 | |
| static void do_check_treebin(mstate m, bindex_t i);
 | |
| static void do_check_smallbin(mstate m, bindex_t i);
 | |
| static void do_check_malloc_state(mstate m);
 | |
| static int bin_find(mstate m, mchunkptr x);
 | |
| static size_t traverse_and_check(mstate m);
 | |
| #endif /* DEBUG */
 | |
| 
 | |
| /* ---------------------------- Indexing Bins ---------------------------- */
 | |
| 
 | |
| #define is_small(s)         (((s) >> SMALLBIN_SHIFT) < NSMALLBINS)
 | |
| #define small_index(s)      (bindex_t)((s)  >> SMALLBIN_SHIFT)
 | |
| #define small_index2size(i) ((i)  << SMALLBIN_SHIFT)
 | |
| #define MIN_SMALL_INDEX     (small_index(MIN_CHUNK_SIZE))
 | |
| 
 | |
| /* addressing by index. See above about smallbin repositioning */
 | |
| #define smallbin_at(M, i)   ((sbinptr)((char*)&((M)->smallbins[(i)<<1])))
 | |
| #define treebin_at(M,i)     (&((M)->treebins[i]))
 | |
| 
 | |
| /* assign tree index for size S to variable I. Use x86 asm if possible  */
 | |
| #if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))
 | |
| #define compute_tree_index(S, I)\
 | |
| {\
 | |
|   unsigned int X = S >> TREEBIN_SHIFT;\
 | |
|   if (X == 0)\
 | |
|     I = 0;\
 | |
|   else if (X > 0xFFFF)\
 | |
|     I = NTREEBINS-1;\
 | |
|   else {\
 | |
|     unsigned int K = (unsigned) sizeof(X)*__CHAR_BIT__ - 1 - (unsigned) __builtin_clz(X); \
 | |
|     I =  (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\
 | |
|   }\
 | |
| }
 | |
| 
 | |
| #elif defined (__INTEL_COMPILER)
 | |
| #define compute_tree_index(S, I)\
 | |
| {\
 | |
|   size_t X = S >> TREEBIN_SHIFT;\
 | |
|   if (X == 0)\
 | |
|     I = 0;\
 | |
|   else if (X > 0xFFFF)\
 | |
|     I = NTREEBINS-1;\
 | |
|   else {\
 | |
|     unsigned int K = _bit_scan_reverse (X); \
 | |
|     I =  (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\
 | |
|   }\
 | |
| }
 | |
| 
 | |
| #elif defined(_MSC_VER) && _MSC_VER>=1300
 | |
| #define compute_tree_index(S, I)\
 | |
| {\
 | |
|   size_t X = S >> TREEBIN_SHIFT;\
 | |
|   if (X == 0)\
 | |
|     I = 0;\
 | |
|   else if (X > 0xFFFF)\
 | |
|     I = NTREEBINS-1;\
 | |
|   else {\
 | |
|     unsigned int K;\
 | |
|     _BitScanReverse((DWORD *) &K, (DWORD) X);\
 | |
|     I =  (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\
 | |
|   }\
 | |
| }
 | |
| 
 | |
| #else /* GNUC */
 | |
| #define compute_tree_index(S, I)\
 | |
| {\
 | |
|   size_t X = S >> TREEBIN_SHIFT;\
 | |
|   if (X == 0)\
 | |
|     I = 0;\
 | |
|   else if (X > 0xFFFF)\
 | |
|     I = NTREEBINS-1;\
 | |
|   else {\
 | |
|     unsigned int Y = (unsigned int)X;\
 | |
|     unsigned int N = ((Y - 0x100) >> 16) & 8;\
 | |
|     unsigned int K = (((Y <<= N) - 0x1000) >> 16) & 4;\
 | |
|     N += K;\
 | |
|     N += K = (((Y <<= K) - 0x4000) >> 16) & 2;\
 | |
|     K = 14 - N + ((Y <<= K) >> 15);\
 | |
|     I = (K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1));\
 | |
|   }\
 | |
| }
 | |
| #endif /* GNUC */
 | |
| 
 | |
| /* Bit representing maximum resolved size in a treebin at i */
 | |
| #define bit_for_tree_index(i) \
 | |
|    (i == NTREEBINS-1)? (SIZE_T_BITSIZE-1) : (((i) >> 1) + TREEBIN_SHIFT - 2)
 | |
| 
 | |
| /* Shift placing maximum resolved bit in a treebin at i as sign bit */
 | |
| #define leftshift_for_tree_index(i) \
 | |
|    ((i == NTREEBINS-1)? 0 : \
 | |
|     ((SIZE_T_BITSIZE-SIZE_T_ONE) - (((i) >> 1) + TREEBIN_SHIFT - 2)))
 | |
| 
 | |
| /* The size of the smallest chunk held in bin with index i */
 | |
| #define minsize_for_tree_index(i) \
 | |
|    ((SIZE_T_ONE << (((i) >> 1) + TREEBIN_SHIFT)) |  \
 | |
|    (((size_t)((i) & SIZE_T_ONE)) << (((i) >> 1) + TREEBIN_SHIFT - 1)))
 | |
| 
 | |
| 
 | |
| /* ------------------------ Operations on bin maps ----------------------- */
 | |
| 
 | |
| /* bit corresponding to given index */
 | |
| #define idx2bit(i)              ((binmap_t)(1) << (i))
 | |
| 
 | |
| /* Mark/Clear bits with given index */
 | |
| #define mark_smallmap(M,i)      ((M)->smallmap |=  idx2bit(i))
 | |
| #define clear_smallmap(M,i)     ((M)->smallmap &= ~idx2bit(i))
 | |
| #define smallmap_is_marked(M,i) ((M)->smallmap &   idx2bit(i))
 | |
| 
 | |
| #define mark_treemap(M,i)       ((M)->treemap  |=  idx2bit(i))
 | |
| #define clear_treemap(M,i)      ((M)->treemap  &= ~idx2bit(i))
 | |
| #define treemap_is_marked(M,i)  ((M)->treemap  &   idx2bit(i))
 | |
| 
 | |
| /* isolate the least set bit of a bitmap */
 | |
| #define least_bit(x)         ((x) & -(x))
 | |
| 
 | |
| /* mask with all bits to left of least bit of x on */
 | |
| #define left_bits(x)         ((x<<1) | -(x<<1))
 | |
| 
 | |
| /* mask with all bits to left of or equal to least bit of x on */
 | |
| #define same_or_left_bits(x) ((x) | -(x))
 | |
| 
 | |
| /* index corresponding to given bit. Use x86 asm if possible */
 | |
| 
 | |
| #if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))
 | |
| #define compute_bit2idx(X, I)\
 | |
| {\
 | |
|   unsigned int J;\
 | |
|   J = __builtin_ctz(X); \
 | |
|   I = (bindex_t)J;\
 | |
| }
 | |
| 
 | |
| #elif defined (__INTEL_COMPILER)
 | |
| #define compute_bit2idx(X, I)\
 | |
| {\
 | |
|   unsigned int J;\
 | |
|   J = _bit_scan_forward (X); \
 | |
|   I = (bindex_t)J;\
 | |
| }
 | |
| 
 | |
| #elif defined(_MSC_VER) && _MSC_VER>=1300
 | |
| #define compute_bit2idx(X, I)\
 | |
| {\
 | |
|   unsigned int J;\
 | |
|   _BitScanForward((DWORD *) &J, X);\
 | |
|   I = (bindex_t)J;\
 | |
| }
 | |
| 
 | |
| #elif USE_BUILTIN_FFS
 | |
| #define compute_bit2idx(X, I) I = ffs(X)-1
 | |
| 
 | |
| #else
 | |
| #define compute_bit2idx(X, I)\
 | |
| {\
 | |
|   unsigned int Y = X - 1;\
 | |
|   unsigned int K = Y >> (16-4) & 16;\
 | |
|   unsigned int N = K;        Y >>= K;\
 | |
|   N += K = Y >> (8-3) &  8;  Y >>= K;\
 | |
|   N += K = Y >> (4-2) &  4;  Y >>= K;\
 | |
|   N += K = Y >> (2-1) &  2;  Y >>= K;\
 | |
|   N += K = Y >> (1-0) &  1;  Y >>= K;\
 | |
|   I = (bindex_t)(N + Y);\
 | |
| }
 | |
| #endif /* GNUC */
 | |
| 
 | |
| 
 | |
| /* ----------------------- Runtime Check Support ------------------------- */
 | |
| 
 | |
| /*
 | |
|   For security, the main invariant is that malloc/free/etc never
 | |
|   writes to a static address other than malloc_state, unless static
 | |
|   malloc_state itself has been corrupted, which cannot occur via
 | |
|   malloc (because of these checks). In essence this means that we
 | |
|   believe all pointers, sizes, maps etc held in malloc_state, but
 | |
|   check all of those linked or offsetted from other embedded data
 | |
|   structures.  These checks are interspersed with main code in a way
 | |
|   that tends to minimize their run-time cost.
 | |
| 
 | |
|   When FOOTERS is defined, in addition to range checking, we also
 | |
|   verify footer fields of inuse chunks, which can be used guarantee
 | |
|   that the mstate controlling malloc/free is intact.  This is a
 | |
|   streamlined version of the approach described by William Robertson
 | |
|   et al in "Run-time Detection of Heap-based Overflows" LISA'03
 | |
|   http://www.usenix.org/events/lisa03/tech/robertson.html The footer
 | |
|   of an inuse chunk holds the xor of its mstate and a random seed,
 | |
|   that is checked upon calls to free() and realloc().  This is
 | |
|   (probabalistically) unguessable from outside the program, but can be
 | |
|   computed by any code successfully malloc'ing any chunk, so does not
 | |
|   itself provide protection against code that has already broken
 | |
|   security through some other means.  Unlike Robertson et al, we
 | |
|   always dynamically check addresses of all offset chunks (previous,
 | |
|   next, etc). This turns out to be cheaper than relying on hashes.
 | |
| */
 | |
| 
 | |
| #if !INSECURE
 | |
| /* Check if address a is at least as high as any from MORECORE or MMAP */
 | |
| #define ok_address(M, a) ((char*)(a) >= (M)->least_addr)
 | |
| /* Check if address of next chunk n is higher than base chunk p */
 | |
| #define ok_next(p, n)    ((char*)(p) < (char*)(n))
 | |
| /* Check if p has inuse status */
 | |
| #define ok_inuse(p)     is_inuse(p)
 | |
| /* Check if p has its pinuse bit on */
 | |
| #define ok_pinuse(p)     pinuse(p)
 | |
| 
 | |
| #else /* !INSECURE */
 | |
| #define ok_address(M, a) (1)
 | |
| #define ok_next(b, n)    (1)
 | |
| #define ok_inuse(p)      (1)
 | |
| #define ok_pinuse(p)     (1)
 | |
| #endif /* !INSECURE */
 | |
| 
 | |
| #if (FOOTERS && !INSECURE)
 | |
| /* Check if (alleged) mstate m has expected magic field */
 | |
| #define ok_magic(M)      ((M)->magic == mparams.magic)
 | |
| #else /* (FOOTERS && !INSECURE) */
 | |
| #define ok_magic(M)      (1)
 | |
| #endif /* (FOOTERS && !INSECURE) */
 | |
| 
 | |
| /* In gcc, use __builtin_expect to minimize impact of checks */
 | |
| #if !INSECURE
 | |
| #if defined(__GNUC__) && __GNUC__ >= 3
 | |
| #define RTCHECK(e)  __builtin_expect(e, 1)
 | |
| #else /* GNUC */
 | |
| #define RTCHECK(e)  (e)
 | |
| #endif /* GNUC */
 | |
| #else /* !INSECURE */
 | |
| #define RTCHECK(e)  (1)
 | |
| #endif /* !INSECURE */
 | |
| 
 | |
| /* macros to set up inuse chunks with or without footers */
 | |
| 
 | |
| #if !FOOTERS
 | |
| 
 | |
| #define mark_inuse_foot(M,p,s)
 | |
| 
 | |
| /* Macros for setting head/foot of non-mmapped chunks */
 | |
| 
 | |
| /* Set cinuse bit and pinuse bit of next chunk */
 | |
| #define set_inuse(M,p,s)\
 | |
|   ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\
 | |
|   ((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT)
 | |
| 
 | |
| /* Set cinuse and pinuse of this chunk and pinuse of next chunk */
 | |
| #define set_inuse_and_pinuse(M,p,s)\
 | |
|   ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
 | |
|   ((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT)
 | |
| 
 | |
| /* Set size, cinuse and pinuse bit of this chunk */
 | |
| #define set_size_and_pinuse_of_inuse_chunk(M, p, s)\
 | |
|   ((p)->head = (s|PINUSE_BIT|CINUSE_BIT))
 | |
| 
 | |
| #else /* FOOTERS */
 | |
| 
 | |
| /* Set foot of inuse chunk to be xor of mstate and seed */
 | |
| #define mark_inuse_foot(M,p,s)\
 | |
|   (((mchunkptr)((char*)(p) + (s)))->prev_foot = ((size_t)(M) ^ mparams.magic))
 | |
| 
 | |
| #define get_mstate_for(p)\
 | |
|   ((mstate)(((mchunkptr)((char*)(p) +\
 | |
|     (chunksize(p))))->prev_foot ^ mparams.magic))
 | |
| 
 | |
| #define set_inuse(M,p,s)\
 | |
|   ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\
 | |
|   (((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT), \
 | |
|   mark_inuse_foot(M,p,s))
 | |
| 
 | |
| #define set_inuse_and_pinuse(M,p,s)\
 | |
|   ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
 | |
|   (((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT),\
 | |
|  mark_inuse_foot(M,p,s))
 | |
| 
 | |
| #define set_size_and_pinuse_of_inuse_chunk(M, p, s)\
 | |
|   ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
 | |
|   mark_inuse_foot(M, p, s))
 | |
| 
 | |
| #endif /* !FOOTERS */
 | |
| 
 | |
| /* ---------------------------- setting mparams -------------------------- */
 | |
| 
 | |
| #if LOCK_AT_FORK
 | |
| static void pre_fork(void)
 | |
| {
 | |
| 	ACQUIRE_LOCK(&(gm)->mutex);
 | |
| }
 | |
| 
 | |
| static void post_fork_parent(void)
 | |
| {
 | |
| 	RELEASE_LOCK(&(gm)->mutex);
 | |
| }
 | |
| 
 | |
| static void post_fork_child(void)
 | |
| {
 | |
| 	INITIAL_LOCK(&(gm)->mutex);
 | |
| }
 | |
| #endif /* LOCK_AT_FORK */
 | |
| 
 | |
| /* Initialize mparams */
 | |
| static int init_mparams(void)
 | |
| {
 | |
| #ifdef NEED_GLOBAL_LOCK_INIT
 | |
| 	if(malloc_global_mutex_status <= 0)
 | |
| 		init_malloc_global_mutex();
 | |
| #endif
 | |
| 
 | |
| 	ACQUIRE_MALLOC_GLOBAL_LOCK();
 | |
| 	if(mparams.magic == 0) {
 | |
| 		size_t magic;
 | |
| 		size_t psize;
 | |
| 		size_t gsize;
 | |
| 
 | |
| #ifndef WIN32
 | |
| 		psize = malloc_getpagesize;
 | |
| 		gsize = ((DEFAULT_GRANULARITY != 0) ? DEFAULT_GRANULARITY : psize);
 | |
| #else /* WIN32 */
 | |
| 		{
 | |
| 			SYSTEM_INFO system_info;
 | |
| 			GetSystemInfo(&system_info);
 | |
| 			psize = system_info.dwPageSize;
 | |
| 			gsize = ((DEFAULT_GRANULARITY != 0) ? DEFAULT_GRANULARITY : system_info.dwAllocationGranularity);
 | |
| 		}
 | |
| #endif /* WIN32 */
 | |
| 
 | |
| 		/* Sanity-check configuration:
 | |
| 		   size_t must be unsigned and as wide as pointer type.
 | |
| 		   ints must be at least 4 bytes.
 | |
| 		   alignment must be at least 8.
 | |
| 		   Alignment, min chunk size, and page size must all be powers of 2.
 | |
| 		 */
 | |
| 		if((sizeof(size_t) != sizeof(char *)) || (MAX_SIZE_T < MIN_CHUNK_SIZE) || (sizeof(int) < 4) || (MALLOC_ALIGNMENT < (size_t) 8U) || ((MALLOC_ALIGNMENT & (MALLOC_ALIGNMENT - SIZE_T_ONE)) != 0)
 | |
| 		   || ((MCHUNK_SIZE & (MCHUNK_SIZE - SIZE_T_ONE)) != 0) || ((gsize & (gsize - SIZE_T_ONE)) != 0) || ((psize & (psize - SIZE_T_ONE)) != 0))
 | |
| 			ABORT;
 | |
| 		mparams.granularity = gsize;
 | |
| 		mparams.page_size = psize;
 | |
| 		mparams.mmap_threshold = DEFAULT_MMAP_THRESHOLD;
 | |
| 		mparams.trim_threshold = DEFAULT_TRIM_THRESHOLD;
 | |
| #if MORECORE_CONTIGUOUS
 | |
| 		mparams.default_mflags = USE_LOCK_BIT | USE_MMAP_BIT;
 | |
| #else /* MORECORE_CONTIGUOUS */
 | |
| 		mparams.default_mflags = USE_LOCK_BIT | USE_MMAP_BIT | USE_NONCONTIGUOUS_BIT;
 | |
| #endif /* MORECORE_CONTIGUOUS */
 | |
| 
 | |
| #if !ONLY_MSPACES
 | |
| 		/* Set up lock for main malloc area */
 | |
| 		gm->mflags = mparams.default_mflags;
 | |
| 		(void) INITIAL_LOCK(&gm->mutex);
 | |
| #endif
 | |
| #if LOCK_AT_FORK
 | |
| 		pthread_atfork(&pre_fork, &post_fork_parent, &post_fork_child);
 | |
| #endif
 | |
| 
 | |
| 		{
 | |
| #if USE_DEV_RANDOM
 | |
| 			int fd;
 | |
| 			unsigned char buf[sizeof(size_t)];
 | |
| 			/* Try to use /dev/urandom, else fall back on using time */
 | |
| 			if((fd = open("/dev/urandom", O_RDONLY)) >= 0 && read(fd, buf, sizeof(buf)) == sizeof(buf)) {
 | |
| 				magic = *((size_t *) buf);
 | |
| 				close(fd);
 | |
| 			} else
 | |
| #endif /* USE_DEV_RANDOM */
 | |
| #ifdef WIN32
 | |
| 				magic = (size_t) (GetTickCount() ^ (size_t) 0x55555555U);
 | |
| #elif defined(LACKS_TIME_H)
 | |
| 				magic = (size_t) & magic ^ (size_t) 0x55555555U;
 | |
| #else
 | |
| 				magic = (size_t) (time(0) ^ (size_t) 0x55555555U);
 | |
| #endif
 | |
| 			magic |= (size_t) 8U;	/* ensure nonzero */
 | |
| 			magic &= ~(size_t) 7U;	/* improve chances of fault for bad values */
 | |
| 			/* Until memory modes commonly available, use volatile-write */
 | |
| 			(*(volatile size_t *) (&(mparams.magic))) = magic;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	RELEASE_MALLOC_GLOBAL_LOCK();
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* support for mallopt */
 | |
| static int change_mparam(int param_number, int value)
 | |
| {
 | |
| 	size_t val;
 | |
| 	ensure_initialization();
 | |
| 	val = (value == -1) ? MAX_SIZE_T : (size_t) value;
 | |
| 	switch (param_number) {
 | |
| 	case M_TRIM_THRESHOLD:
 | |
| 		mparams.trim_threshold = val;
 | |
| 		return 1;
 | |
| 	case M_GRANULARITY:
 | |
| 		if(val >= mparams.page_size && ((val & (val - 1)) == 0)) {
 | |
| 			mparams.granularity = val;
 | |
| 			return 1;
 | |
| 		} else
 | |
| 			return 0;
 | |
| 	case M_MMAP_THRESHOLD:
 | |
| 		mparams.mmap_threshold = val;
 | |
| 		return 1;
 | |
| 	default:
 | |
| 		return 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #if DEBUG
 | |
| /* ------------------------- Debugging Support --------------------------- */
 | |
| 
 | |
| /* Check properties of any chunk, whether free, inuse, mmapped etc  */
 | |
| static void do_check_any_chunk(mstate m, mchunkptr p)
 | |
| {
 | |
| 	assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
 | |
| 	assert(ok_address(m, p));
 | |
| }
 | |
| 
 | |
| /* Check properties of top chunk */
 | |
| static void do_check_top_chunk(mstate m, mchunkptr p)
 | |
| {
 | |
| 	msegmentptr sp = segment_holding(m, (char *) p);
 | |
| 	size_t sz = p->head & ~INUSE_BITS;	/* third-lowest bit can be set! */
 | |
| 	assert(sp != 0);
 | |
| 	assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
 | |
| 	assert(ok_address(m, p));
 | |
| 	assert(sz == m->topsize);
 | |
| 	assert(sz > 0);
 | |
| 	assert(sz == ((sp->base + sp->size) - (char *) p) - TOP_FOOT_SIZE);
 | |
| 	assert(pinuse(p));
 | |
| 	assert(!pinuse(chunk_plus_offset(p, sz)));
 | |
| }
 | |
| 
 | |
| /* Check properties of (inuse) mmapped chunks */
 | |
| static void do_check_mmapped_chunk(mstate m, mchunkptr p)
 | |
| {
 | |
| 	size_t sz = chunksize(p);
 | |
| 	size_t len = (sz + (p->prev_foot) + MMAP_FOOT_PAD);
 | |
| 	assert(is_mmapped(p));
 | |
| 	assert(use_mmap(m));
 | |
| 	assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
 | |
| 	assert(ok_address(m, p));
 | |
| 	assert(!is_small(sz));
 | |
| 	assert((len & (mparams.page_size - SIZE_T_ONE)) == 0);
 | |
| 	assert(chunk_plus_offset(p, sz)->head == FENCEPOST_HEAD);
 | |
| 	assert(chunk_plus_offset(p, sz + SIZE_T_SIZE)->head == 0);
 | |
| }
 | |
| 
 | |
| /* Check properties of inuse chunks */
 | |
| static void do_check_inuse_chunk(mstate m, mchunkptr p)
 | |
| {
 | |
| 	do_check_any_chunk(m, p);
 | |
| 	assert(is_inuse(p));
 | |
| 	assert(next_pinuse(p));
 | |
| 	/* If not pinuse and not mmapped, previous chunk has OK offset */
 | |
| 	assert(is_mmapped(p) || pinuse(p) || next_chunk(prev_chunk(p)) == p);
 | |
| 	if(is_mmapped(p))
 | |
| 		do_check_mmapped_chunk(m, p);
 | |
| }
 | |
| 
 | |
| /* Check properties of free chunks */
 | |
| static void do_check_free_chunk(mstate m, mchunkptr p)
 | |
| {
 | |
| 	size_t sz = chunksize(p);
 | |
| 	mchunkptr next = chunk_plus_offset(p, sz);
 | |
| 	do_check_any_chunk(m, p);
 | |
| 	assert(!is_inuse(p));
 | |
| 	assert(!next_pinuse(p));
 | |
| 	assert(!is_mmapped(p));
 | |
| 	if(p != m->dv && p != m->top) {
 | |
| 		if(sz >= MIN_CHUNK_SIZE) {
 | |
| 			assert((sz & CHUNK_ALIGN_MASK) == 0);
 | |
| 			assert(is_aligned(chunk2mem(p)));
 | |
| 			assert(next->prev_foot == sz);
 | |
| 			assert(pinuse(p));
 | |
| 			assert(next == m->top || is_inuse(next));
 | |
| 			assert(p->fd->bk == p);
 | |
| 			assert(p->bk->fd == p);
 | |
| 		} else		/* markers are always of size SIZE_T_SIZE */
 | |
| 			assert(sz == SIZE_T_SIZE);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Check properties of malloced chunks at the point they are malloced */
 | |
| static void do_check_malloced_chunk(mstate m, void *mem, size_t s)
 | |
| {
 | |
| 	if(mem != 0) {
 | |
| 		mchunkptr p = mem2chunk(mem);
 | |
| 		size_t sz = p->head & ~INUSE_BITS;
 | |
| 		do_check_inuse_chunk(m, p);
 | |
| 		assert((sz & CHUNK_ALIGN_MASK) == 0);
 | |
| 		assert(sz >= MIN_CHUNK_SIZE);
 | |
| 		assert(sz >= s);
 | |
| 		/* unless mmapped, size is less than MIN_CHUNK_SIZE more than request */
 | |
| 		assert(is_mmapped(p) || sz < (s + MIN_CHUNK_SIZE));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Check a tree and its subtrees.  */
 | |
| static void do_check_tree(mstate m, tchunkptr t)
 | |
| {
 | |
| 	tchunkptr head = 0;
 | |
| 	tchunkptr u = t;
 | |
| 	bindex_t tindex = t->index;
 | |
| 	size_t tsize = chunksize(t);
 | |
| 	bindex_t idx;
 | |
| 	compute_tree_index(tsize, idx);
 | |
| 	assert(tindex == idx);
 | |
| 	assert(tsize >= MIN_LARGE_SIZE);
 | |
| 	assert(tsize >= minsize_for_tree_index(idx));
 | |
| 	assert((idx == NTREEBINS - 1) || (tsize < minsize_for_tree_index((idx + 1))));
 | |
| 
 | |
| 	do {			/* traverse through chain of same-sized nodes */
 | |
| 		do_check_any_chunk(m, ((mchunkptr) u));
 | |
| 		assert(u->index == tindex);
 | |
| 		assert(chunksize(u) == tsize);
 | |
| 		assert(!is_inuse(u));
 | |
| 		assert(!next_pinuse(u));
 | |
| 		assert(u->fd->bk == u);
 | |
| 		assert(u->bk->fd == u);
 | |
| 		if(u->parent == 0) {
 | |
| 			assert(u->child[0] == 0);
 | |
| 			assert(u->child[1] == 0);
 | |
| 		} else {
 | |
| 			assert(head == 0);	/* only one node on chain has parent */
 | |
| 			head = u;
 | |
| 			assert(u->parent != u);
 | |
| 			assert(u->parent->child[0] == u || u->parent->child[1] == u || *((tbinptr *) (u->parent)) == u);
 | |
| 			if(u->child[0] != 0) {
 | |
| 				assert(u->child[0]->parent == u);
 | |
| 				assert(u->child[0] != u);
 | |
| 				do_check_tree(m, u->child[0]);
 | |
| 			}
 | |
| 			if(u->child[1] != 0) {
 | |
| 				assert(u->child[1]->parent == u);
 | |
| 				assert(u->child[1] != u);
 | |
| 				do_check_tree(m, u->child[1]);
 | |
| 			}
 | |
| 			if(u->child[0] != 0 && u->child[1] != 0) {
 | |
| 				assert(chunksize(u->child[0]) < chunksize(u->child[1]));
 | |
| 			}
 | |
| 		}
 | |
| 		u = u->fd;
 | |
| 	} while(u != t);
 | |
| 	assert(head != 0);
 | |
| }
 | |
| 
 | |
| /*  Check all the chunks in a treebin.  */
 | |
| static void do_check_treebin(mstate m, bindex_t i)
 | |
| {
 | |
| 	tbinptr *tb = treebin_at(m, i);
 | |
| 	tchunkptr t = *tb;
 | |
| 	int empty = (m->treemap & (1U << i)) == 0;
 | |
| 	if(t == 0)
 | |
| 		assert(empty);
 | |
| 	if(!empty)
 | |
| 		do_check_tree(m, t);
 | |
| }
 | |
| 
 | |
| /*  Check all the chunks in a smallbin.  */
 | |
| static void do_check_smallbin(mstate m, bindex_t i)
 | |
| {
 | |
| 	sbinptr b = smallbin_at(m, i);
 | |
| 	mchunkptr p = b->bk;
 | |
| 	unsigned int empty = (m->smallmap & (1U << i)) == 0;
 | |
| 	if(p == b)
 | |
| 		assert(empty);
 | |
| 	if(!empty) {
 | |
| 		for(; p != b; p = p->bk) {
 | |
| 			size_t size = chunksize(p);
 | |
| 			mchunkptr q;
 | |
| 			/* each chunk claims to be free */
 | |
| 			do_check_free_chunk(m, p);
 | |
| 			/* chunk belongs in bin */
 | |
| 			assert(small_index(size) == i);
 | |
| 			assert(p->bk == b || chunksize(p->bk) == chunksize(p));
 | |
| 			/* chunk is followed by an inuse chunk */
 | |
| 			q = next_chunk(p);
 | |
| 			if(q->head != FENCEPOST_HEAD)
 | |
| 				do_check_inuse_chunk(m, q);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Find x in a bin. Used in other check functions. */
 | |
| static int bin_find(mstate m, mchunkptr x)
 | |
| {
 | |
| 	size_t size = chunksize(x);
 | |
| 	if(is_small(size)) {
 | |
| 		bindex_t sidx = small_index(size);
 | |
| 		sbinptr b = smallbin_at(m, sidx);
 | |
| 		if(smallmap_is_marked(m, sidx)) {
 | |
| 			mchunkptr p = b;
 | |
| 			do {
 | |
| 				if(p == x)
 | |
| 					return 1;
 | |
| 			} while((p = p->fd) != b);
 | |
| 		}
 | |
| 	} else {
 | |
| 		bindex_t tidx;
 | |
| 		compute_tree_index(size, tidx);
 | |
| 		if(treemap_is_marked(m, tidx)) {
 | |
| 			tchunkptr t = *treebin_at(m, tidx);
 | |
| 			size_t sizebits = size << leftshift_for_tree_index(tidx);
 | |
| 			while(t != 0 && chunksize(t) != size) {
 | |
| 				t = t->child[(sizebits >> (SIZE_T_BITSIZE - SIZE_T_ONE)) & 1];
 | |
| 				sizebits <<= 1;
 | |
| 			}
 | |
| 			if(t != 0) {
 | |
| 				tchunkptr u = t;
 | |
| 				do {
 | |
| 					if(u == (tchunkptr) x)
 | |
| 						return 1;
 | |
| 				} while((u = u->fd) != t);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Traverse each chunk and check it; return total */
 | |
| static size_t traverse_and_check(mstate m)
 | |
| {
 | |
| 	size_t sum = 0;
 | |
| 	if(is_initialized(m)) {
 | |
| 		msegmentptr s = &m->seg;
 | |
| 		sum += m->topsize + TOP_FOOT_SIZE;
 | |
| 		while(s != 0) {
 | |
| 			mchunkptr q = align_as_chunk(s->base);
 | |
| 			mchunkptr lastq = 0;
 | |
| 			assert(pinuse(q));
 | |
| 			while(segment_holds(s, q) && q != m->top && q->head != FENCEPOST_HEAD) {
 | |
| 				sum += chunksize(q);
 | |
| 				if(is_inuse(q)) {
 | |
| 					assert(!bin_find(m, q));
 | |
| 					do_check_inuse_chunk(m, q);
 | |
| 				} else {
 | |
| 					assert(q == m->dv || bin_find(m, q));
 | |
| 					assert(lastq == 0 || is_inuse(lastq));	/* Not 2 consecutive free */
 | |
| 					do_check_free_chunk(m, q);
 | |
| 				}
 | |
| 				lastq = q;
 | |
| 				q = next_chunk(q);
 | |
| 			}
 | |
| 			s = s->next;
 | |
| 		}
 | |
| 	}
 | |
| 	return sum;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Check all properties of malloc_state. */
 | |
| static void do_check_malloc_state(mstate m)
 | |
| {
 | |
| 	bindex_t i;
 | |
| 	size_t total;
 | |
| 	/* check bins */
 | |
| 	for(i = 0; i < NSMALLBINS; ++i)
 | |
| 		do_check_smallbin(m, i);
 | |
| 	for(i = 0; i < NTREEBINS; ++i)
 | |
| 		do_check_treebin(m, i);
 | |
| 
 | |
| 	if(m->dvsize != 0) {	/* check dv chunk */
 | |
| 		do_check_any_chunk(m, m->dv);
 | |
| 		assert(m->dvsize == chunksize(m->dv));
 | |
| 		assert(m->dvsize >= MIN_CHUNK_SIZE);
 | |
| 		assert(bin_find(m, m->dv) == 0);
 | |
| 	}
 | |
| 
 | |
| 	if(m->top != 0) {	/* check top chunk */
 | |
| 		do_check_top_chunk(m, m->top);
 | |
| 		/*assert(m->topsize == chunksize(m->top)); redundant */
 | |
| 		assert(m->topsize > 0);
 | |
| 		assert(bin_find(m, m->top) == 0);
 | |
| 	}
 | |
| 
 | |
| 	total = traverse_and_check(m);
 | |
| 	assert(total <= m->footprint);
 | |
| 	assert(m->footprint <= m->max_footprint);
 | |
| }
 | |
| #endif /* DEBUG */
 | |
| 
 | |
| /* ----------------------------- statistics ------------------------------ */
 | |
| 
 | |
| #if !NO_MALLINFO
 | |
| static struct mallinfo internal_mallinfo(mstate m)
 | |
| {
 | |
| 	struct mallinfo nm = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
 | |
| 	ensure_initialization();
 | |
| 	if(!PREACTION(m)) {
 | |
| 		check_malloc_state(m);
 | |
| 		if(is_initialized(m)) {
 | |
| 			size_t nfree = SIZE_T_ONE;	/* top always free */
 | |
| 			size_t mfree = m->topsize + TOP_FOOT_SIZE;
 | |
| 			size_t sum = mfree;
 | |
| 			msegmentptr s = &m->seg;
 | |
| 			while(s != 0) {
 | |
| 				mchunkptr q = align_as_chunk(s->base);
 | |
| 				while(segment_holds(s, q) && q != m->top && q->head != FENCEPOST_HEAD) {
 | |
| 					size_t sz = chunksize(q);
 | |
| 					sum += sz;
 | |
| 					if(!is_inuse(q)) {
 | |
| 						mfree += sz;
 | |
| 						++nfree;
 | |
| 					}
 | |
| 					q = next_chunk(q);
 | |
| 				}
 | |
| 				s = s->next;
 | |
| 			}
 | |
| 
 | |
| 			nm.arena = sum;
 | |
| 			nm.ordblks = nfree;
 | |
| 			nm.hblkhd = m->footprint - sum;
 | |
| 			nm.usmblks = m->max_footprint;
 | |
| 			nm.uordblks = m->footprint - mfree;
 | |
| 			nm.fordblks = mfree;
 | |
| 			nm.keepcost = m->topsize;
 | |
| 		}
 | |
| 
 | |
| 		POSTACTION(m);
 | |
| 	}
 | |
| 	return nm;
 | |
| }
 | |
| #endif /* !NO_MALLINFO */
 | |
| 
 | |
| #if !NO_MALLOC_STATS
 | |
| static void internal_malloc_stats(mstate m)
 | |
| {
 | |
| 	ensure_initialization();
 | |
| 	if(!PREACTION(m)) {
 | |
| 		size_t maxfp = 0;
 | |
| 		size_t fp = 0;
 | |
| 		size_t used = 0;
 | |
| 		check_malloc_state(m);
 | |
| 		if(is_initialized(m)) {
 | |
| 			msegmentptr s = &m->seg;
 | |
| 			maxfp = m->max_footprint;
 | |
| 			fp = m->footprint;
 | |
| 			used = fp - (m->topsize + TOP_FOOT_SIZE);
 | |
| 
 | |
| 			while(s != 0) {
 | |
| 				mchunkptr q = align_as_chunk(s->base);
 | |
| 				while(segment_holds(s, q) && q != m->top && q->head != FENCEPOST_HEAD) {
 | |
| 					if(!is_inuse(q))
 | |
| 						used -= chunksize(q);
 | |
| 					q = next_chunk(q);
 | |
| 				}
 | |
| 				s = s->next;
 | |
| 			}
 | |
| 		}
 | |
| 		POSTACTION(m);	/* drop lock */
 | |
| 		fprintf(stderr, "max system bytes = %10lu\n", (unsigned long) (maxfp));
 | |
| 		fprintf(stderr, "system bytes     = %10lu\n", (unsigned long) (fp));
 | |
| 		fprintf(stderr, "in use bytes     = %10lu\n", (unsigned long) (used));
 | |
| 	}
 | |
| }
 | |
| #endif /* NO_MALLOC_STATS */
 | |
| 
 | |
| /* ----------------------- Operations on smallbins ----------------------- */
 | |
| 
 | |
| /*
 | |
|   Various forms of linking and unlinking are defined as macros.  Even
 | |
|   the ones for trees, which are very long but have very short typical
 | |
|   paths.  This is ugly but reduces reliance on inlining support of
 | |
|   compilers.
 | |
| */
 | |
| 
 | |
| /* Link a free chunk into a smallbin  */
 | |
| #define insert_small_chunk(M, P, S) {\
 | |
|   bindex_t I  = small_index(S);\
 | |
|   mchunkptr B = smallbin_at(M, I);\
 | |
|   mchunkptr F = B;\
 | |
|   assert(S >= MIN_CHUNK_SIZE);\
 | |
|   if (!smallmap_is_marked(M, I))\
 | |
|     mark_smallmap(M, I);\
 | |
|   else if (RTCHECK(ok_address(M, B->fd)))\
 | |
|     F = B->fd;\
 | |
|   else {\
 | |
|     CORRUPTION_ERROR_ACTION(M);\
 | |
|   }\
 | |
|   B->fd = P;\
 | |
|   F->bk = P;\
 | |
|   P->fd = F;\
 | |
|   P->bk = B;\
 | |
| }
 | |
| 
 | |
| /* Unlink a chunk from a smallbin  */
 | |
| #define unlink_small_chunk(M, P, S) {\
 | |
|   mchunkptr F = P->fd;\
 | |
|   mchunkptr B = P->bk;\
 | |
|   bindex_t I = small_index(S);\
 | |
|   assert(P != B);\
 | |
|   assert(P != F);\
 | |
|   assert(chunksize(P) == small_index2size(I));\
 | |
|   if (RTCHECK(F == smallbin_at(M,I) || (ok_address(M, F) && F->bk == P))) { \
 | |
|     if (B == F) {\
 | |
|       clear_smallmap(M, I);\
 | |
|     }\
 | |
|     else if (RTCHECK(B == smallbin_at(M,I) ||\
 | |
|                      (ok_address(M, B) && B->fd == P))) {\
 | |
|       F->bk = B;\
 | |
|       B->fd = F;\
 | |
|     }\
 | |
|     else {\
 | |
|       CORRUPTION_ERROR_ACTION(M);\
 | |
|     }\
 | |
|   }\
 | |
|   else {\
 | |
|     CORRUPTION_ERROR_ACTION(M);\
 | |
|   }\
 | |
| }
 | |
| 
 | |
| /* Unlink the first chunk from a smallbin */
 | |
| #define unlink_first_small_chunk(M, B, P, I) {\
 | |
|   mchunkptr F = P->fd;\
 | |
|   assert(P != B);\
 | |
|   assert(P != F);\
 | |
|   assert(chunksize(P) == small_index2size(I));\
 | |
|   if (B == F) {\
 | |
|     clear_smallmap(M, I);\
 | |
|   }\
 | |
|   else if (RTCHECK(ok_address(M, F) && F->bk == P)) {\
 | |
|     F->bk = B;\
 | |
|     B->fd = F;\
 | |
|   }\
 | |
|   else {\
 | |
|     CORRUPTION_ERROR_ACTION(M);\
 | |
|   }\
 | |
| }
 | |
| 
 | |
| /* Replace dv node, binning the old one */
 | |
| /* Used only when dvsize known to be small */
 | |
| #define replace_dv(M, P, S) {\
 | |
|   size_t DVS = M->dvsize;\
 | |
|   assert(is_small(DVS));\
 | |
|   if (DVS != 0) {\
 | |
|     mchunkptr DV = M->dv;\
 | |
|     insert_small_chunk(M, DV, DVS);\
 | |
|   }\
 | |
|   M->dvsize = S;\
 | |
|   M->dv = P;\
 | |
| }
 | |
| 
 | |
| /* ------------------------- Operations on trees ------------------------- */
 | |
| 
 | |
| /* Insert chunk into tree */
 | |
| #define insert_large_chunk(M, X, S) {\
 | |
|   tbinptr* H;\
 | |
|   bindex_t I;\
 | |
|   compute_tree_index(S, I);\
 | |
|   H = treebin_at(M, I);\
 | |
|   X->index = I;\
 | |
|   X->child[0] = X->child[1] = 0;\
 | |
|   if (!treemap_is_marked(M, I)) {\
 | |
|     mark_treemap(M, I);\
 | |
|     *H = X;\
 | |
|     X->parent = (tchunkptr)H;\
 | |
|     X->fd = X->bk = X;\
 | |
|   }\
 | |
|   else {\
 | |
|     tchunkptr T = *H;\
 | |
|     size_t K = S << leftshift_for_tree_index(I);\
 | |
|     for (;;) {\
 | |
|       if (chunksize(T) != S) {\
 | |
|         tchunkptr* C = &(T->child[(K >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]);\
 | |
|         K <<= 1;\
 | |
|         if (*C != 0)\
 | |
|           T = *C;\
 | |
|         else if (RTCHECK(ok_address(M, C))) {\
 | |
|           *C = X;\
 | |
|           X->parent = T;\
 | |
|           X->fd = X->bk = X;\
 | |
|           break;\
 | |
|         }\
 | |
|         else {\
 | |
|           CORRUPTION_ERROR_ACTION(M);\
 | |
|           break;\
 | |
|         }\
 | |
|       }\
 | |
|       else {\
 | |
|         tchunkptr F = T->fd;\
 | |
|         if (RTCHECK(ok_address(M, T) && ok_address(M, F))) {\
 | |
|           T->fd = F->bk = X;\
 | |
|           X->fd = F;\
 | |
|           X->bk = T;\
 | |
|           X->parent = 0;\
 | |
|           break;\
 | |
|         }\
 | |
|         else {\
 | |
|           CORRUPTION_ERROR_ACTION(M);\
 | |
|           break;\
 | |
|         }\
 | |
|       }\
 | |
|     }\
 | |
|   }\
 | |
| }
 | |
| 
 | |
| /*
 | |
|   Unlink steps:
 | |
| 
 | |
|   1. If x is a chained node, unlink it from its same-sized fd/bk links
 | |
|      and choose its bk node as its replacement.
 | |
|   2. If x was the last node of its size, but not a leaf node, it must
 | |
|      be replaced with a leaf node (not merely one with an open left or
 | |
|      right), to make sure that lefts and rights of descendents
 | |
|      correspond properly to bit masks.  We use the rightmost descendent
 | |
|      of x.  We could use any other leaf, but this is easy to locate and
 | |
|      tends to counteract removal of leftmosts elsewhere, and so keeps
 | |
|      paths shorter than minimally guaranteed.  This doesn't loop much
 | |
|      because on average a node in a tree is near the bottom.
 | |
|   3. If x is the base of a chain (i.e., has parent links) relink
 | |
|      x's parent and children to x's replacement (or null if none).
 | |
| */
 | |
| 
 | |
| #define unlink_large_chunk(M, X) {\
 | |
|   tchunkptr XP = X->parent;\
 | |
|   tchunkptr R;\
 | |
|   if (X->bk != X) {\
 | |
|     tchunkptr F = X->fd;\
 | |
|     R = X->bk;\
 | |
|     if (RTCHECK(ok_address(M, F) && F->bk == X && R->fd == X)) {\
 | |
|       F->bk = R;\
 | |
|       R->fd = F;\
 | |
|     }\
 | |
|     else {\
 | |
|       CORRUPTION_ERROR_ACTION(M);\
 | |
|     }\
 | |
|   }\
 | |
|   else {\
 | |
|     tchunkptr* RP;\
 | |
|     if (((R = *(RP = &(X->child[1]))) != 0) ||\
 | |
|         ((R = *(RP = &(X->child[0]))) != 0)) {\
 | |
|       tchunkptr* CP;\
 | |
|       while ((*(CP = &(R->child[1])) != 0) ||\
 | |
|              (*(CP = &(R->child[0])) != 0)) {\
 | |
|         R = *(RP = CP);\
 | |
|       }\
 | |
|       if (RTCHECK(ok_address(M, RP)))\
 | |
|         *RP = 0;\
 | |
|       else {\
 | |
|         CORRUPTION_ERROR_ACTION(M);\
 | |
|       }\
 | |
|     }\
 | |
|   }\
 | |
|   if (XP != 0) {\
 | |
|     tbinptr* H = treebin_at(M, X->index);\
 | |
|     if (X == *H) {\
 | |
|       if ((*H = R) == 0) \
 | |
|         clear_treemap(M, X->index);\
 | |
|     }\
 | |
|     else if (RTCHECK(ok_address(M, XP))) {\
 | |
|       if (XP->child[0] == X) \
 | |
|         XP->child[0] = R;\
 | |
|       else \
 | |
|         XP->child[1] = R;\
 | |
|     }\
 | |
|     else\
 | |
|       CORRUPTION_ERROR_ACTION(M);\
 | |
|     if (R != 0) {\
 | |
|       if (RTCHECK(ok_address(M, R))) {\
 | |
|         tchunkptr C0, C1;\
 | |
|         R->parent = XP;\
 | |
|         if ((C0 = X->child[0]) != 0) {\
 | |
|           if (RTCHECK(ok_address(M, C0))) {\
 | |
|             R->child[0] = C0;\
 | |
|             C0->parent = R;\
 | |
|           }\
 | |
|           else\
 | |
|             CORRUPTION_ERROR_ACTION(M);\
 | |
|         }\
 | |
|         if ((C1 = X->child[1]) != 0) {\
 | |
|           if (RTCHECK(ok_address(M, C1))) {\
 | |
|             R->child[1] = C1;\
 | |
|             C1->parent = R;\
 | |
|           }\
 | |
|           else\
 | |
|             CORRUPTION_ERROR_ACTION(M);\
 | |
|         }\
 | |
|       }\
 | |
|       else\
 | |
|         CORRUPTION_ERROR_ACTION(M);\
 | |
|     }\
 | |
|   }\
 | |
| }
 | |
| 
 | |
| /* Relays to large vs small bin operations */
 | |
| 
 | |
| #define insert_chunk(M, P, S)\
 | |
|   if (is_small(S)) insert_small_chunk(M, P, S)\
 | |
|   else { tchunkptr TP = (tchunkptr)(P); insert_large_chunk(M, TP, S); }
 | |
| 
 | |
| #define unlink_chunk(M, P, S)\
 | |
|   if (is_small(S)) unlink_small_chunk(M, P, S)\
 | |
|   else { tchunkptr TP = (tchunkptr)(P); unlink_large_chunk(M, TP); }
 | |
| 
 | |
| 
 | |
| /* Relays to internal calls to malloc/free from realloc, memalign etc */
 | |
| 
 | |
| #if ONLY_MSPACES
 | |
| #define internal_malloc(m, b) mspace_malloc(m, b)
 | |
| #define internal_free(m, mem) mspace_free(m,mem);
 | |
| #else /* ONLY_MSPACES */
 | |
| #if MSPACES
 | |
| #define internal_malloc(m, b)\
 | |
|   ((m == gm)? dlmalloc(b) : mspace_malloc(m, b))
 | |
| #define internal_free(m, mem)\
 | |
|    if (m == gm) dlfree(mem); else mspace_free(m,mem);
 | |
| #else /* MSPACES */
 | |
| #define internal_malloc(m, b) dlmalloc(b)
 | |
| #define internal_free(m, mem) dlfree(mem)
 | |
| #endif /* MSPACES */
 | |
| #endif /* ONLY_MSPACES */
 | |
| 
 | |
| /* -----------------------  Direct-mmapping chunks ----------------------- */
 | |
| 
 | |
| /*
 | |
|   Directly mmapped chunks are set up with an offset to the start of
 | |
|   the mmapped region stored in the prev_foot field of the chunk. This
 | |
|   allows reconstruction of the required argument to MUNMAP when freed,
 | |
|   and also allows adjustment of the returned chunk to meet alignment
 | |
|   requirements (especially in memalign).
 | |
| */
 | |
| 
 | |
| /* Malloc using mmap */
 | |
| static void *mmap_alloc(mstate m, size_t nb)
 | |
| {
 | |
| 	size_t mmsize = mmap_align(nb + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
 | |
| 	if(m->footprint_limit != 0) {
 | |
| 		size_t fp = m->footprint + mmsize;
 | |
| 		if(fp <= m->footprint || fp > m->footprint_limit)
 | |
| 			return 0;
 | |
| 	}
 | |
| 	if(mmsize > nb) {	/* Check for wrap around 0 */
 | |
| 		char *mm = (char *) (CALL_DIRECT_MMAP(mmsize));
 | |
| 		if(mm != CMFAIL) {
 | |
| 			size_t offset = align_offset(chunk2mem(mm));
 | |
| 			size_t psize = mmsize - offset - MMAP_FOOT_PAD;
 | |
| 			mchunkptr p = (mchunkptr) (mm + offset);
 | |
| 			p->prev_foot = offset;
 | |
| 			p->head = psize;
 | |
| 			mark_inuse_foot(m, p, psize);
 | |
| 			chunk_plus_offset(p, psize)->head = FENCEPOST_HEAD;
 | |
| 			chunk_plus_offset(p, psize + SIZE_T_SIZE)->head = 0;
 | |
| 
 | |
| 			if(m->least_addr == 0 || mm < m->least_addr)
 | |
| 				m->least_addr = mm;
 | |
| 			if((m->footprint += mmsize) > m->max_footprint)
 | |
| 				m->max_footprint = m->footprint;
 | |
| 			assert(is_aligned(chunk2mem(p)));
 | |
| 			check_mmapped_chunk(m, p);
 | |
| 			return chunk2mem(p);
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Realloc using mmap */
 | |
| static mchunkptr mmap_resize(mstate m, mchunkptr oldp, size_t nb, int flags)
 | |
| {
 | |
| 	size_t oldsize = chunksize(oldp);
 | |
| 	(void) flags;		/* placate people compiling -Wunused */
 | |
| 	if(is_small(nb))	/* Can't shrink mmap regions below small size */
 | |
| 		return 0;
 | |
| 	/* Keep old chunk if big enough but not too big */
 | |
| 	if(oldsize >= nb + SIZE_T_SIZE && (oldsize - nb) <= (mparams.granularity << 1))
 | |
| 		return oldp;
 | |
| 	else {
 | |
| 		size_t offset = oldp->prev_foot;
 | |
| 		size_t oldmmsize = oldsize + offset + MMAP_FOOT_PAD;
 | |
| 		size_t newmmsize = mmap_align(nb + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
 | |
| 		char *cp = (char *) CALL_MREMAP((char *) oldp - offset,
 | |
| 						oldmmsize, newmmsize, flags);
 | |
| 		if(cp != CMFAIL) {
 | |
| 			mchunkptr newp = (mchunkptr) (cp + offset);
 | |
| 			size_t psize = newmmsize - offset - MMAP_FOOT_PAD;
 | |
| 			newp->head = psize;
 | |
| 			mark_inuse_foot(m, newp, psize);
 | |
| 			chunk_plus_offset(newp, psize)->head = FENCEPOST_HEAD;
 | |
| 			chunk_plus_offset(newp, psize + SIZE_T_SIZE)->head = 0;
 | |
| 
 | |
| 			if(cp < m->least_addr)
 | |
| 				m->least_addr = cp;
 | |
| 			if((m->footprint += newmmsize - oldmmsize) > m->max_footprint)
 | |
| 				m->max_footprint = m->footprint;
 | |
| 			check_mmapped_chunk(m, newp);
 | |
| 			return newp;
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* -------------------------- mspace management -------------------------- */
 | |
| 
 | |
| /* Initialize top chunk and its size */
 | |
| static void init_top(mstate m, mchunkptr p, size_t psize)
 | |
| {
 | |
| 	/* Ensure alignment */
 | |
| 	size_t offset = align_offset(chunk2mem(p));
 | |
| 	p = (mchunkptr) ((char *) p + offset);
 | |
| 	psize -= offset;
 | |
| 
 | |
| 	m->top = p;
 | |
| 	m->topsize = psize;
 | |
| 	p->head = psize | PINUSE_BIT;
 | |
| 	/* set size of fake trailing chunk holding overhead space only once */
 | |
| 	chunk_plus_offset(p, psize)->head = TOP_FOOT_SIZE;
 | |
| 	m->trim_check = mparams.trim_threshold;	/* reset on each update */
 | |
| }
 | |
| 
 | |
| /* Initialize bins for a new mstate that is otherwise zeroed out */
 | |
| static void init_bins(mstate m)
 | |
| {
 | |
| 	/* Establish circular links for smallbins */
 | |
| 	bindex_t i;
 | |
| 	for(i = 0; i < NSMALLBINS; ++i) {
 | |
| 		sbinptr bin = smallbin_at(m, i);
 | |
| 		bin->fd = bin->bk = bin;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #if PROCEED_ON_ERROR
 | |
| 
 | |
| /* default corruption action */
 | |
| static void reset_on_error(mstate m)
 | |
| {
 | |
| 	int i;
 | |
| 	++malloc_corruption_error_count;
 | |
| 	/* Reinitialize fields to forget about all memory */
 | |
| 	m->smallmap = m->treemap = 0;
 | |
| 	m->dvsize = m->topsize = 0;
 | |
| 	m->seg.base = 0;
 | |
| 	m->seg.size = 0;
 | |
| 	m->seg.next = 0;
 | |
| 	m->top = m->dv = 0;
 | |
| 	for(i = 0; i < NTREEBINS; ++i)
 | |
| 		*treebin_at(m, i) = 0;
 | |
| 	init_bins(m);
 | |
| }
 | |
| #endif /* PROCEED_ON_ERROR */
 | |
| 
 | |
| /* Allocate chunk and prepend remainder with chunk in successor base. */
 | |
| static void *prepend_alloc(mstate m, char *newbase, char *oldbase, size_t nb)
 | |
| {
 | |
| 	mchunkptr p = align_as_chunk(newbase);
 | |
| 	mchunkptr oldfirst = align_as_chunk(oldbase);
 | |
| 	size_t psize = (char *) oldfirst - (char *) p;
 | |
| 	mchunkptr q = chunk_plus_offset(p, nb);
 | |
| 	size_t qsize = psize - nb;
 | |
| 	set_size_and_pinuse_of_inuse_chunk(m, p, nb);
 | |
| 
 | |
| 	assert((char *) oldfirst > (char *) q);
 | |
| 	assert(pinuse(oldfirst));
 | |
| 	assert(qsize >= MIN_CHUNK_SIZE);
 | |
| 
 | |
| 	/* consolidate remainder with first chunk of old base */
 | |
| 	if(oldfirst == m->top) {
 | |
| 		size_t tsize = m->topsize += qsize;
 | |
| 		m->top = q;
 | |
| 		q->head = tsize | PINUSE_BIT;
 | |
| 		check_top_chunk(m, q);
 | |
| 	} else if(oldfirst == m->dv) {
 | |
| 		size_t dsize = m->dvsize += qsize;
 | |
| 		m->dv = q;
 | |
| 		set_size_and_pinuse_of_free_chunk(q, dsize);
 | |
| 	} else {
 | |
| 		if(!is_inuse(oldfirst)) {
 | |
| 			size_t nsize = chunksize(oldfirst);
 | |
| 			unlink_chunk(m, oldfirst, nsize);
 | |
| 			oldfirst = chunk_plus_offset(oldfirst, nsize);
 | |
| 			qsize += nsize;
 | |
| 		}
 | |
| 		set_free_with_pinuse(q, qsize, oldfirst);
 | |
| 		insert_chunk(m, q, qsize);
 | |
| 		check_free_chunk(m, q);
 | |
| 	}
 | |
| 
 | |
| 	check_malloced_chunk(m, chunk2mem(p), nb);
 | |
| 	return chunk2mem(p);
 | |
| }
 | |
| 
 | |
| /* Add a segment to hold a new noncontiguous region */
 | |
| static void add_segment(mstate m, char *tbase, size_t tsize, flag_t mmapped)
 | |
| {
 | |
| 	/* Determine locations and sizes of segment, fenceposts, old top */
 | |
| 	char *old_top = (char *) m->top;
 | |
| 	msegmentptr oldsp = segment_holding(m, old_top);
 | |
| 	char *old_end = oldsp->base + oldsp->size;
 | |
| 	size_t ssize = pad_request(sizeof(struct malloc_segment));
 | |
| 	char *rawsp = old_end - (ssize + FOUR_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
 | |
| 	size_t offset = align_offset(chunk2mem(rawsp));
 | |
| 	char *asp = rawsp + offset;
 | |
| 	char *csp = (asp < (old_top + MIN_CHUNK_SIZE)) ? old_top : asp;
 | |
| 	mchunkptr sp = (mchunkptr) csp;
 | |
| 	msegmentptr ss = (msegmentptr) (chunk2mem(sp));
 | |
| 	mchunkptr tnext = chunk_plus_offset(sp, ssize);
 | |
| 	mchunkptr p = tnext;
 | |
| 	int nfences = 0;
 | |
| 
 | |
| 	/* reset top to new space */
 | |
| 	init_top(m, (mchunkptr) tbase, tsize - TOP_FOOT_SIZE);
 | |
| 
 | |
| 	/* Set up segment record */
 | |
| 	assert(is_aligned(ss));
 | |
| 	set_size_and_pinuse_of_inuse_chunk(m, sp, ssize);
 | |
| 	*ss = m->seg;		/* Push current record */
 | |
| 	m->seg.base = tbase;
 | |
| 	m->seg.size = tsize;
 | |
| 	m->seg.sflags = mmapped;
 | |
| 	m->seg.next = ss;
 | |
| 
 | |
| 	/* Insert trailing fenceposts */
 | |
| 	for(;;) {
 | |
| 		mchunkptr nextp = chunk_plus_offset(p, SIZE_T_SIZE);
 | |
| 		p->head = FENCEPOST_HEAD;
 | |
| 		++nfences;
 | |
| 		if((char *) (&(nextp->head)) < old_end)
 | |
| 			p = nextp;
 | |
| 		else
 | |
| 			break;
 | |
| 	}
 | |
| 	assert(nfences >= 2);
 | |
| 
 | |
| 	/* Insert the rest of old top into a bin as an ordinary free chunk */
 | |
| 	if(csp != old_top) {
 | |
| 		mchunkptr q = (mchunkptr) old_top;
 | |
| 		size_t psize = csp - old_top;
 | |
| 		mchunkptr tn = chunk_plus_offset(q, psize);
 | |
| 		set_free_with_pinuse(q, psize, tn);
 | |
| 		insert_chunk(m, q, psize);
 | |
| 	}
 | |
| 
 | |
| 	check_top_chunk(m, m->top);
 | |
| }
 | |
| 
 | |
| /* -------------------------- System allocation -------------------------- */
 | |
| 
 | |
| /* Get memory from system using MORECORE or MMAP */
 | |
| static void *sys_alloc(mstate m, size_t nb)
 | |
| {
 | |
| 	char *tbase = CMFAIL;
 | |
| 	size_t tsize = 0;
 | |
| 	flag_t mmap_flag = 0;
 | |
| 	size_t asize;		/* allocation size */
 | |
| 
 | |
| 	ensure_initialization();
 | |
| 
 | |
| 	/* Directly map large chunks, but only if already initialized */
 | |
| 	if(use_mmap(m) && nb >= mparams.mmap_threshold && m->topsize != 0) {
 | |
| 		void *mem = mmap_alloc(m, nb);
 | |
| 		if(mem != 0)
 | |
| 			return mem;
 | |
| 	}
 | |
| 
 | |
| 	asize = granularity_align(nb + SYS_ALLOC_PADDING);
 | |
| 	if(asize <= nb)
 | |
| 		return 0;	/* wraparound */
 | |
| 	if(m->footprint_limit != 0) {
 | |
| 		size_t fp = m->footprint + asize;
 | |
| 		if(fp <= m->footprint || fp > m->footprint_limit)
 | |
| 			return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	   Try getting memory in any of three ways (in most-preferred to
 | |
| 	   least-preferred order):
 | |
| 	   1. A call to MORECORE that can normally contiguously extend memory.
 | |
| 	   (disabled if not MORECORE_CONTIGUOUS or not HAVE_MORECORE or
 | |
| 	   or main space is mmapped or a previous contiguous call failed)
 | |
| 	   2. A call to MMAP new space (disabled if not HAVE_MMAP).
 | |
| 	   Note that under the default settings, if MORECORE is unable to
 | |
| 	   fulfill a request, and HAVE_MMAP is true, then mmap is
 | |
| 	   used as a noncontiguous system allocator. This is a useful backup
 | |
| 	   strategy for systems with holes in address spaces -- in this case
 | |
| 	   sbrk cannot contiguously expand the heap, but mmap may be able to
 | |
| 	   find space.
 | |
| 	   3. A call to MORECORE that cannot usually contiguously extend memory.
 | |
| 	   (disabled if not HAVE_MORECORE)
 | |
| 
 | |
| 	   In all cases, we need to request enough bytes from system to ensure
 | |
| 	   we can malloc nb bytes upon success, so pad with enough space for
 | |
| 	   top_foot, plus alignment-pad to make sure we don't lose bytes if
 | |
| 	   not on boundary, and round this up to a granularity unit.
 | |
| 	 */
 | |
| 
 | |
| 	if(MORECORE_CONTIGUOUS && !use_noncontiguous(m)) {
 | |
| 		char *br = CMFAIL;
 | |
| 		size_t ssize = asize;	/* sbrk call size */
 | |
| 		msegmentptr ss = (m->top == 0) ? 0 : segment_holding(m, (char *) m->top);
 | |
| 		ACQUIRE_MALLOC_GLOBAL_LOCK();
 | |
| 
 | |
| 		if(ss == 0) {	/* First time through or recovery */
 | |
| 			char *base = (char *) CALL_MORECORE(0);
 | |
| 			if(base != CMFAIL) {
 | |
| 				size_t fp;
 | |
| 				/* Adjust to end on a page boundary */
 | |
| 				if(!is_page_aligned(base))
 | |
| 					ssize += (page_align((size_t) base) - (size_t) base);
 | |
| 				fp = m->footprint + ssize;	/* recheck limits */
 | |
| 				if(ssize > nb && ssize < HALF_MAX_SIZE_T && (m->footprint_limit == 0 || (fp > m->footprint && fp <= m->footprint_limit)) && (br = (char *) (CALL_MORECORE(ssize))) == base) {
 | |
| 					tbase = base;
 | |
| 					tsize = ssize;
 | |
| 				}
 | |
| 			}
 | |
| 		} else {
 | |
| 			/* Subtract out existing available top space from MORECORE request. */
 | |
| 			ssize = granularity_align(nb - m->topsize + SYS_ALLOC_PADDING);
 | |
| 			/* Use mem here only if it did continuously extend old space */
 | |
| 			if(ssize < HALF_MAX_SIZE_T && (br = (char *) (CALL_MORECORE(ssize))) == ss->base + ss->size) {
 | |
| 				tbase = br;
 | |
| 				tsize = ssize;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if(tbase == CMFAIL) {	/* Cope with partial failure */
 | |
| 			if(br != CMFAIL) {	/* Try to use/extend the space we did get */
 | |
| 				if(ssize < HALF_MAX_SIZE_T && ssize < nb + SYS_ALLOC_PADDING) {
 | |
| 					size_t esize = granularity_align(nb + SYS_ALLOC_PADDING - ssize);
 | |
| 					if(esize < HALF_MAX_SIZE_T) {
 | |
| 						char *end = (char *) CALL_MORECORE(esize);
 | |
| 						if(end != CMFAIL)
 | |
| 							ssize += esize;
 | |
| 						else {	/* Can't use; try to release */
 | |
| 							(void) CALL_MORECORE(-ssize);
 | |
| 							br = CMFAIL;
 | |
| 						}
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 			if(br != CMFAIL) {	/* Use the space we did get */
 | |
| 				tbase = br;
 | |
| 				tsize = ssize;
 | |
| 			} else
 | |
| 				disable_contiguous(m);	/* Don't try contiguous path in the future */
 | |
| 		}
 | |
| 
 | |
| 		RELEASE_MALLOC_GLOBAL_LOCK();
 | |
| 	}
 | |
| 
 | |
| 	if(HAVE_MMAP && tbase == CMFAIL) {	/* Try MMAP */
 | |
| 		char *mp = (char *) (CALL_MMAP(asize));
 | |
| 		if(mp != CMFAIL) {
 | |
| 			tbase = mp;
 | |
| 			tsize = asize;
 | |
| 			mmap_flag = USE_MMAP_BIT;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if(HAVE_MORECORE && tbase == CMFAIL) {	/* Try noncontiguous MORECORE */
 | |
| 		if(asize < HALF_MAX_SIZE_T) {
 | |
| 			char *br = CMFAIL;
 | |
| 			char *end = CMFAIL;
 | |
| 			ACQUIRE_MALLOC_GLOBAL_LOCK();
 | |
| 			br = (char *) (CALL_MORECORE(asize));
 | |
| 			end = (char *) (CALL_MORECORE(0));
 | |
| 			RELEASE_MALLOC_GLOBAL_LOCK();
 | |
| 			if(br != CMFAIL && end != CMFAIL && br < end) {
 | |
| 				size_t ssize = end - br;
 | |
| 				if(ssize > nb + TOP_FOOT_SIZE) {
 | |
| 					tbase = br;
 | |
| 					tsize = ssize;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if(tbase != CMFAIL) {
 | |
| 
 | |
| 		if((m->footprint += tsize) > m->max_footprint)
 | |
| 			m->max_footprint = m->footprint;
 | |
| 
 | |
| 		if(!is_initialized(m)) {	/* first-time initialization */
 | |
| 			if(m->least_addr == 0 || tbase < m->least_addr)
 | |
| 				m->least_addr = tbase;
 | |
| 			m->seg.base = tbase;
 | |
| 			m->seg.size = tsize;
 | |
| 			m->seg.sflags = mmap_flag;
 | |
| 			m->magic = mparams.magic;
 | |
| 			m->release_checks = MAX_RELEASE_CHECK_RATE;
 | |
| 			init_bins(m);
 | |
| #if !ONLY_MSPACES
 | |
| 			if(is_global(m))
 | |
| 				init_top(m, (mchunkptr) tbase, tsize - TOP_FOOT_SIZE);
 | |
| 			else
 | |
| #endif
 | |
| 			{
 | |
| 				/* Offset top by embedded malloc_state */
 | |
| 				mchunkptr mn = next_chunk(mem2chunk(m));
 | |
| 				init_top(m, mn, (size_t) ((tbase + tsize) - (char *) mn) - TOP_FOOT_SIZE);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		else {
 | |
| 			/* Try to merge with an existing segment */
 | |
| 			msegmentptr sp = &m->seg;
 | |
| 			/* Only consider most recent segment if traversal suppressed */
 | |
| 			while(sp != 0 && tbase != sp->base + sp->size)
 | |
| 				sp = (NO_SEGMENT_TRAVERSAL) ? 0 : sp->next;
 | |
| 			if(sp != 0 && !is_extern_segment(sp) && (sp->sflags & USE_MMAP_BIT) == mmap_flag && segment_holds(sp, m->top)) {	/* append */
 | |
| 				sp->size += tsize;
 | |
| 				init_top(m, m->top, m->topsize + tsize);
 | |
| 			} else {
 | |
| 				if(tbase < m->least_addr)
 | |
| 					m->least_addr = tbase;
 | |
| 				sp = &m->seg;
 | |
| 				while(sp != 0 && sp->base != tbase + tsize)
 | |
| 					sp = (NO_SEGMENT_TRAVERSAL) ? 0 : sp->next;
 | |
| 				if(sp != 0 && !is_extern_segment(sp) && (sp->sflags & USE_MMAP_BIT) == mmap_flag) {
 | |
| 					char *oldbase = sp->base;
 | |
| 					sp->base = tbase;
 | |
| 					sp->size += tsize;
 | |
| 					return prepend_alloc(m, tbase, oldbase, nb);
 | |
| 				} else
 | |
| 					add_segment(m, tbase, tsize, mmap_flag);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if(nb < m->topsize) {	/* Allocate from new or extended top space */
 | |
| 			size_t rsize = m->topsize -= nb;
 | |
| 			mchunkptr p = m->top;
 | |
| 			mchunkptr r = m->top = chunk_plus_offset(p, nb);
 | |
| 			r->head = rsize | PINUSE_BIT;
 | |
| 			set_size_and_pinuse_of_inuse_chunk(m, p, nb);
 | |
| 			check_top_chunk(m, m->top);
 | |
| 			check_malloced_chunk(m, chunk2mem(p), nb);
 | |
| 			return chunk2mem(p);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	MALLOC_FAILURE_ACTION;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* -----------------------  system deallocation -------------------------- */
 | |
| 
 | |
| /* Unmap and unlink any mmapped segments that don't contain used chunks */
 | |
| static size_t release_unused_segments(mstate m)
 | |
| {
 | |
| 	size_t released = 0;
 | |
| 	int nsegs = 0;
 | |
| 	msegmentptr pred = &m->seg;
 | |
| 	msegmentptr sp = pred->next;
 | |
| 	while(sp != 0) {
 | |
| 		char *base = sp->base;
 | |
| 		size_t size = sp->size;
 | |
| 		msegmentptr next = sp->next;
 | |
| 		++nsegs;
 | |
| 		if(is_mmapped_segment(sp) && !is_extern_segment(sp)) {
 | |
| 			mchunkptr p = align_as_chunk(base);
 | |
| 			size_t psize = chunksize(p);
 | |
| 			/* Can unmap if first chunk holds entire segment and not pinned */
 | |
| 			if(!is_inuse(p) && (char *) p + psize >= base + size - TOP_FOOT_SIZE) {
 | |
| 				tchunkptr tp = (tchunkptr) p;
 | |
| 				assert(segment_holds(sp, (char *) sp));
 | |
| 				if(p == m->dv) {
 | |
| 					m->dv = 0;
 | |
| 					m->dvsize = 0;
 | |
| 				} else {
 | |
| 					unlink_large_chunk(m, tp);
 | |
| 				}
 | |
| 				if(CALL_MUNMAP(base, size) == 0) {
 | |
| 					released += size;
 | |
| 					m->footprint -= size;
 | |
| 					/* unlink obsoleted record */
 | |
| 					sp = pred;
 | |
| 					sp->next = next;
 | |
| 				} else {	/* back out if cannot unmap */
 | |
| 					insert_large_chunk(m, tp, psize);
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 		if(NO_SEGMENT_TRAVERSAL)	/* scan only first segment */
 | |
| 			break;
 | |
| 		pred = sp;
 | |
| 		sp = next;
 | |
| 	}
 | |
| 	/* Reset check counter */
 | |
| 	m->release_checks = (((size_t) nsegs > (size_t) MAX_RELEASE_CHECK_RATE) ? (size_t) nsegs : (size_t) MAX_RELEASE_CHECK_RATE);
 | |
| 	return released;
 | |
| }
 | |
| 
 | |
| static int sys_trim(mstate m, size_t pad)
 | |
| {
 | |
| 	size_t released = 0;
 | |
| 	ensure_initialization();
 | |
| 	if(pad < MAX_REQUEST && is_initialized(m)) {
 | |
| 		pad += TOP_FOOT_SIZE;	/* ensure enough room for segment overhead */
 | |
| 
 | |
| 		if(m->topsize > pad) {
 | |
| 			/* Shrink top space in granularity-size units, keeping at least one */
 | |
| 			size_t unit = mparams.granularity;
 | |
| 			size_t extra = ((m->topsize - pad + (unit - SIZE_T_ONE)) / unit - SIZE_T_ONE) * unit;
 | |
| 			msegmentptr sp = segment_holding(m, (char *) m->top);
 | |
| 
 | |
| 			if(!is_extern_segment(sp)) {
 | |
| 				if(is_mmapped_segment(sp)) {
 | |
| 					if(HAVE_MMAP && sp->size >= extra && !has_segment_link(m, sp)) {	/* can't shrink if pinned */
 | |
| 						size_t newsize = sp->size - extra;
 | |
| 						(void) newsize;	/* placate people compiling -Wunused-variable */
 | |
| 						/* Prefer mremap, fall back to munmap */
 | |
| 						if((CALL_MREMAP(sp->base, sp->size, newsize, 0) != MFAIL) || (CALL_MUNMAP(sp->base + newsize, extra) == 0)) {
 | |
| 							released = extra;
 | |
| 						}
 | |
| 					}
 | |
| 				} else if(HAVE_MORECORE) {
 | |
| 					if(extra >= HALF_MAX_SIZE_T)	/* Avoid wrapping negative */
 | |
| 						extra = (HALF_MAX_SIZE_T) + SIZE_T_ONE - unit;
 | |
| 					ACQUIRE_MALLOC_GLOBAL_LOCK();
 | |
| 					{
 | |
| 						/* Make sure end of memory is where we last set it. */
 | |
| 						char *old_br = (char *) (CALL_MORECORE(0));
 | |
| 						if(old_br == sp->base + sp->size) {
 | |
| 							char *rel_br = (char *) (CALL_MORECORE(-extra));
 | |
| 							char *new_br = (char *) (CALL_MORECORE(0));
 | |
| 							if(rel_br != CMFAIL && new_br < old_br)
 | |
| 								released = old_br - new_br;
 | |
| 						}
 | |
| 					}
 | |
| 					RELEASE_MALLOC_GLOBAL_LOCK();
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			if(released != 0) {
 | |
| 				sp->size -= released;
 | |
| 				m->footprint -= released;
 | |
| 				init_top(m, m->top, m->topsize - released);
 | |
| 				check_top_chunk(m, m->top);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* Unmap any unused mmapped segments */
 | |
| 		if(HAVE_MMAP)
 | |
| 			released += release_unused_segments(m);
 | |
| 
 | |
| 		/* On failure, disable autotrim to avoid repeated failed future calls */
 | |
| 		if(released == 0 && m->topsize > m->trim_check)
 | |
| 			m->trim_check = MAX_SIZE_T;
 | |
| 	}
 | |
| 
 | |
| 	return (released != 0) ? 1 : 0;
 | |
| }
 | |
| 
 | |
| /* Consolidate and bin a chunk. Differs from exported versions
 | |
|    of free mainly in that the chunk need not be marked as inuse.
 | |
| */
 | |
| static void dispose_chunk(mstate m, mchunkptr p, size_t psize)
 | |
| {
 | |
| 	mchunkptr next = chunk_plus_offset(p, psize);
 | |
| 	if(!pinuse(p)) {
 | |
| 		mchunkptr prev;
 | |
| 		size_t prevsize = p->prev_foot;
 | |
| 		if(is_mmapped(p)) {
 | |
| 			psize += prevsize + MMAP_FOOT_PAD;
 | |
| 			if(CALL_MUNMAP((char *) p - prevsize, psize) == 0)
 | |
| 				m->footprint -= psize;
 | |
| 			return;
 | |
| 		}
 | |
| 		prev = chunk_minus_offset(p, prevsize);
 | |
| 		psize += prevsize;
 | |
| 		p = prev;
 | |
| 		if(RTCHECK(ok_address(m, prev))) {	/* consolidate backward */
 | |
| 			if(p != m->dv) {
 | |
| 				unlink_chunk(m, p, prevsize);
 | |
| 			} else if((next->head & INUSE_BITS) == INUSE_BITS) {
 | |
| 				m->dvsize = psize;
 | |
| 				set_free_with_pinuse(p, psize, next);
 | |
| 				return;
 | |
| 			}
 | |
| 		} else {
 | |
| 			CORRUPTION_ERROR_ACTION(m);
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| 	if(RTCHECK(ok_address(m, next))) {
 | |
| 		if(!cinuse(next)) {	/* consolidate forward */
 | |
| 			if(next == m->top) {
 | |
| 				size_t tsize = m->topsize += psize;
 | |
| 				m->top = p;
 | |
| 				p->head = tsize | PINUSE_BIT;
 | |
| 				if(p == m->dv) {
 | |
| 					m->dv = 0;
 | |
| 					m->dvsize = 0;
 | |
| 				}
 | |
| 				return;
 | |
| 			} else if(next == m->dv) {
 | |
| 				size_t dsize = m->dvsize += psize;
 | |
| 				m->dv = p;
 | |
| 				set_size_and_pinuse_of_free_chunk(p, dsize);
 | |
| 				return;
 | |
| 			} else {
 | |
| 				size_t nsize = chunksize(next);
 | |
| 				psize += nsize;
 | |
| 				unlink_chunk(m, next, nsize);
 | |
| 				set_size_and_pinuse_of_free_chunk(p, psize);
 | |
| 				if(p == m->dv) {
 | |
| 					m->dvsize = psize;
 | |
| 					return;
 | |
| 				}
 | |
| 			}
 | |
| 		} else {
 | |
| 			set_free_with_pinuse(p, psize, next);
 | |
| 		}
 | |
| 		insert_chunk(m, p, psize);
 | |
| 	} else {
 | |
| 		CORRUPTION_ERROR_ACTION(m);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* ---------------------------- malloc --------------------------- */
 | |
| 
 | |
| /* allocate a large request from the best fitting chunk in a treebin */
 | |
| static void *tmalloc_large(mstate m, size_t nb)
 | |
| {
 | |
| 	tchunkptr v = 0;
 | |
| 	size_t rsize = -nb;	/* Unsigned negation */
 | |
| 	tchunkptr t;
 | |
| 	bindex_t idx;
 | |
| 	compute_tree_index(nb, idx);
 | |
| 	if((t = *treebin_at(m, idx)) != 0) {
 | |
| 		/* Traverse tree for this bin looking for node with size == nb */
 | |
| 		size_t sizebits = nb << leftshift_for_tree_index(idx);
 | |
| 		tchunkptr rst = 0;	/* The deepest untaken right subtree */
 | |
| 		for(;;) {
 | |
| 			tchunkptr rt;
 | |
| 			size_t trem = chunksize(t) - nb;
 | |
| 			if(trem < rsize) {
 | |
| 				v = t;
 | |
| 				if((rsize = trem) == 0)
 | |
| 					break;
 | |
| 			}
 | |
| 			rt = t->child[1];
 | |
| 			t = t->child[(sizebits >> (SIZE_T_BITSIZE - SIZE_T_ONE)) & 1];
 | |
| 			if(rt != 0 && rt != t)
 | |
| 				rst = rt;
 | |
| 			if(t == 0) {
 | |
| 				t = rst;	/* set t to least subtree holding sizes > nb */
 | |
| 				break;
 | |
| 			}
 | |
| 			sizebits <<= 1;
 | |
| 		}
 | |
| 	}
 | |
| 	if(t == 0 && v == 0) {	/* set t to root of next non-empty treebin */
 | |
| 		binmap_t leftbits = left_bits(idx2bit(idx)) & m->treemap;
 | |
| 		if(leftbits != 0) {
 | |
| 			bindex_t i;
 | |
| 			binmap_t leastbit = least_bit(leftbits);
 | |
| 			compute_bit2idx(leastbit, i);
 | |
| 			t = *treebin_at(m, i);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	while(t != 0) {		/* find smallest of tree or subtree */
 | |
| 		size_t trem = chunksize(t) - nb;
 | |
| 		if(trem < rsize) {
 | |
| 			rsize = trem;
 | |
| 			v = t;
 | |
| 		}
 | |
| 		t = leftmost_child(t);
 | |
| 	}
 | |
| 
 | |
| 	/*  If dv is a better fit, return 0 so malloc will use it */
 | |
| 	if(v != 0 && rsize < (size_t) (m->dvsize - nb)) {
 | |
| 		if(RTCHECK(ok_address(m, v))) {	/* split */
 | |
| 			mchunkptr r = chunk_plus_offset(v, nb);
 | |
| 			assert(chunksize(v) == rsize + nb);
 | |
| 			if(RTCHECK(ok_next(v, r))) {
 | |
| 				unlink_large_chunk(m, v);
 | |
| 				if(rsize < MIN_CHUNK_SIZE)
 | |
| 					set_inuse_and_pinuse(m, v, (rsize + nb));
 | |
| 				else {
 | |
| 					set_size_and_pinuse_of_inuse_chunk(m, v, nb);
 | |
| 					set_size_and_pinuse_of_free_chunk(r, rsize);
 | |
| 					insert_chunk(m, r, rsize);
 | |
| 				}
 | |
| 				return chunk2mem(v);
 | |
| 			}
 | |
| 		}
 | |
| 		CORRUPTION_ERROR_ACTION(m);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* allocate a small request from the best fitting chunk in a treebin */
 | |
| static void *tmalloc_small(mstate m, size_t nb)
 | |
| {
 | |
| 	tchunkptr t, v;
 | |
| 	size_t rsize;
 | |
| 	bindex_t i;
 | |
| 	binmap_t leastbit = least_bit(m->treemap);
 | |
| 	compute_bit2idx(leastbit, i);
 | |
| 	v = t = *treebin_at(m, i);
 | |
| 	rsize = chunksize(t) - nb;
 | |
| 
 | |
| 	while((t = leftmost_child(t)) != 0) {
 | |
| 		size_t trem = chunksize(t) - nb;
 | |
| 		if(trem < rsize) {
 | |
| 			rsize = trem;
 | |
| 			v = t;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if(RTCHECK(ok_address(m, v))) {
 | |
| 		mchunkptr r = chunk_plus_offset(v, nb);
 | |
| 		assert(chunksize(v) == rsize + nb);
 | |
| 		if(RTCHECK(ok_next(v, r))) {
 | |
| 			unlink_large_chunk(m, v);
 | |
| 			if(rsize < MIN_CHUNK_SIZE)
 | |
| 				set_inuse_and_pinuse(m, v, (rsize + nb));
 | |
| 			else {
 | |
| 				set_size_and_pinuse_of_inuse_chunk(m, v, nb);
 | |
| 				set_size_and_pinuse_of_free_chunk(r, rsize);
 | |
| 				replace_dv(m, r, rsize);
 | |
| 			}
 | |
| 			return chunk2mem(v);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	CORRUPTION_ERROR_ACTION(m);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #if !ONLY_MSPACES
 | |
| 
 | |
| void *dlmalloc(size_t bytes)
 | |
| {
 | |
| 	/*
 | |
| 	   Basic algorithm:
 | |
| 	   If a small request (< 256 bytes minus per-chunk overhead):
 | |
| 	   1. If one exists, use a remainderless chunk in associated smallbin.
 | |
| 	   (Remainderless means that there are too few excess bytes to
 | |
| 	   represent as a chunk.)
 | |
| 	   2. If it is big enough, use the dv chunk, which is normally the
 | |
| 	   chunk adjacent to the one used for the most recent small request.
 | |
| 	   3. If one exists, split the smallest available chunk in a bin,
 | |
| 	   saving remainder in dv.
 | |
| 	   4. If it is big enough, use the top chunk.
 | |
| 	   5. If available, get memory from system and use it
 | |
| 	   Otherwise, for a large request:
 | |
| 	   1. Find the smallest available binned chunk that fits, and use it
 | |
| 	   if it is better fitting than dv chunk, splitting if necessary.
 | |
| 	   2. If better fitting than any binned chunk, use the dv chunk.
 | |
| 	   3. If it is big enough, use the top chunk.
 | |
| 	   4. If request size >= mmap threshold, try to directly mmap this chunk.
 | |
| 	   5. If available, get memory from system and use it
 | |
| 
 | |
| 	   The ugly goto's here ensure that postaction occurs along all paths.
 | |
| 	 */
 | |
| 
 | |
| #if USE_LOCKS
 | |
| 	ensure_initialization();	/* initialize in sys_alloc if not using locks */
 | |
| #endif
 | |
| 
 | |
| 	if(!PREACTION(gm)) {
 | |
| 		void *mem;
 | |
| 		size_t nb;
 | |
| 		if(bytes <= MAX_SMALL_REQUEST) {
 | |
| 			bindex_t idx;
 | |
| 			binmap_t smallbits;
 | |
| 			nb = (bytes < MIN_REQUEST) ? MIN_CHUNK_SIZE : pad_request(bytes);
 | |
| 			idx = small_index(nb);
 | |
| 			smallbits = gm->smallmap >> idx;
 | |
| 
 | |
| 			if((smallbits & 0x3U) != 0) {	/* Remainderless fit to a smallbin. */
 | |
| 				mchunkptr b, p;
 | |
| 				idx += ~smallbits & 1;	/* Uses next bin if idx empty */
 | |
| 				b = smallbin_at(gm, idx);
 | |
| 				p = b->fd;
 | |
| 				assert(chunksize(p) == small_index2size(idx));
 | |
| 				unlink_first_small_chunk(gm, b, p, idx);
 | |
| 				set_inuse_and_pinuse(gm, p, small_index2size(idx));
 | |
| 				mem = chunk2mem(p);
 | |
| 				check_malloced_chunk(gm, mem, nb);
 | |
| 				goto postaction;
 | |
| 			}
 | |
| 
 | |
| 			else if(nb > gm->dvsize) {
 | |
| 				if(smallbits != 0) {	/* Use chunk in next nonempty smallbin */
 | |
| 					mchunkptr b, p, r;
 | |
| 					size_t rsize;
 | |
| 					bindex_t i;
 | |
| 					binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx));
 | |
| 					binmap_t leastbit = least_bit(leftbits);
 | |
| 					compute_bit2idx(leastbit, i);
 | |
| 					b = smallbin_at(gm, i);
 | |
| 					p = b->fd;
 | |
| 					assert(chunksize(p) == small_index2size(i));
 | |
| 					unlink_first_small_chunk(gm, b, p, i);
 | |
| 					rsize = small_index2size(i) - nb;
 | |
| 					/* Fit here cannot be remainderless if 4byte sizes */
 | |
| 					if(SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE)
 | |
| 						set_inuse_and_pinuse(gm, p, small_index2size(i));
 | |
| 					else {
 | |
| 						set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
 | |
| 						r = chunk_plus_offset(p, nb);
 | |
| 						set_size_and_pinuse_of_free_chunk(r, rsize);
 | |
| 						replace_dv(gm, r, rsize);
 | |
| 					}
 | |
| 					mem = chunk2mem(p);
 | |
| 					check_malloced_chunk(gm, mem, nb);
 | |
| 					goto postaction;
 | |
| 				}
 | |
| 
 | |
| 				else if(gm->treemap != 0 && (mem = tmalloc_small(gm, nb)) != 0) {
 | |
| 					check_malloced_chunk(gm, mem, nb);
 | |
| 					goto postaction;
 | |
| 				}
 | |
| 			}
 | |
| 		} else if(bytes >= MAX_REQUEST)
 | |
| 			nb = MAX_SIZE_T;	/* Too big to allocate. Force failure (in sys alloc) */
 | |
| 		else {
 | |
| 			nb = pad_request(bytes);
 | |
| 			if(gm->treemap != 0 && (mem = tmalloc_large(gm, nb)) != 0) {
 | |
| 				check_malloced_chunk(gm, mem, nb);
 | |
| 				goto postaction;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if(nb <= gm->dvsize) {
 | |
| 			size_t rsize = gm->dvsize - nb;
 | |
| 			mchunkptr p = gm->dv;
 | |
| 			if(rsize >= MIN_CHUNK_SIZE) {	/* split dv */
 | |
| 				mchunkptr r = gm->dv = chunk_plus_offset(p, nb);
 | |
| 				gm->dvsize = rsize;
 | |
| 				set_size_and_pinuse_of_free_chunk(r, rsize);
 | |
| 				set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
 | |
| 			} else {	/* exhaust dv */
 | |
| 				size_t dvs = gm->dvsize;
 | |
| 				gm->dvsize = 0;
 | |
| 				gm->dv = 0;
 | |
| 				set_inuse_and_pinuse(gm, p, dvs);
 | |
| 			}
 | |
| 			mem = chunk2mem(p);
 | |
| 			check_malloced_chunk(gm, mem, nb);
 | |
| 			goto postaction;
 | |
| 		}
 | |
| 
 | |
| 		else if(nb < gm->topsize) {	/* Split top */
 | |
| 			size_t rsize = gm->topsize -= nb;
 | |
| 			mchunkptr p = gm->top;
 | |
| 			mchunkptr r = gm->top = chunk_plus_offset(p, nb);
 | |
| 			r->head = rsize | PINUSE_BIT;
 | |
| 			set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
 | |
| 			mem = chunk2mem(p);
 | |
| 			check_top_chunk(gm, gm->top);
 | |
| 			check_malloced_chunk(gm, mem, nb);
 | |
| 			goto postaction;
 | |
| 		}
 | |
| 
 | |
| 		mem = sys_alloc(gm, nb);
 | |
| 
 | |
| 	      postaction:
 | |
| 		POSTACTION(gm);
 | |
| 		return mem;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* ---------------------------- free --------------------------- */
 | |
| 
 | |
| void dlfree(void *mem)
 | |
| {
 | |
| 	/*
 | |
| 	   Consolidate freed chunks with preceeding or succeeding bordering
 | |
| 	   free chunks, if they exist, and then place in a bin.  Intermixed
 | |
| 	   with special cases for top, dv, mmapped chunks, and usage errors.
 | |
| 	 */
 | |
| 
 | |
| 	if(mem != 0) {
 | |
| 		mchunkptr p = mem2chunk(mem);
 | |
| #if FOOTERS
 | |
| 		mstate fm = get_mstate_for(p);
 | |
| 		if(!ok_magic(fm)) {
 | |
| 			USAGE_ERROR_ACTION(fm, p);
 | |
| 			return;
 | |
| 		}
 | |
| #else /* FOOTERS */
 | |
| #define fm gm
 | |
| #endif /* FOOTERS */
 | |
| 		if(!PREACTION(fm)) {
 | |
| 			check_inuse_chunk(fm, p);
 | |
| 			if(RTCHECK(ok_address(fm, p) && ok_inuse(p))) {
 | |
| 				size_t psize = chunksize(p);
 | |
| 				mchunkptr next = chunk_plus_offset(p, psize);
 | |
| 				if(!pinuse(p)) {
 | |
| 					size_t prevsize = p->prev_foot;
 | |
| 					if(is_mmapped(p)) {
 | |
| 						psize += prevsize + MMAP_FOOT_PAD;
 | |
| 						if(CALL_MUNMAP((char *) p - prevsize, psize) == 0)
 | |
| 							fm->footprint -= psize;
 | |
| 						goto postaction;
 | |
| 					} else {
 | |
| 						mchunkptr prev = chunk_minus_offset(p, prevsize);
 | |
| 						psize += prevsize;
 | |
| 						p = prev;
 | |
| 						if(RTCHECK(ok_address(fm, prev))) {	/* consolidate backward */
 | |
| 							if(p != fm->dv) {
 | |
| 								unlink_chunk(fm, p, prevsize);
 | |
| 							} else if((next->head & INUSE_BITS) == INUSE_BITS) {
 | |
| 								fm->dvsize = psize;
 | |
| 								set_free_with_pinuse(p, psize, next);
 | |
| 								goto postaction;
 | |
| 							}
 | |
| 						} else
 | |
| 							goto erroraction;
 | |
| 					}
 | |
| 				}
 | |
| 
 | |
| 				if(RTCHECK(ok_next(p, next) && ok_pinuse(next))) {
 | |
| 					if(!cinuse(next)) {	/* consolidate forward */
 | |
| 						if(next == fm->top) {
 | |
| 							size_t tsize = fm->topsize += psize;
 | |
| 							fm->top = p;
 | |
| 							p->head = tsize | PINUSE_BIT;
 | |
| 							if(p == fm->dv) {
 | |
| 								fm->dv = 0;
 | |
| 								fm->dvsize = 0;
 | |
| 							}
 | |
| 							if(should_trim(fm, tsize))
 | |
| 								sys_trim(fm, 0);
 | |
| 							goto postaction;
 | |
| 						} else if(next == fm->dv) {
 | |
| 							size_t dsize = fm->dvsize += psize;
 | |
| 							fm->dv = p;
 | |
| 							set_size_and_pinuse_of_free_chunk(p, dsize);
 | |
| 							goto postaction;
 | |
| 						} else {
 | |
| 							size_t nsize = chunksize(next);
 | |
| 							psize += nsize;
 | |
| 							unlink_chunk(fm, next, nsize);
 | |
| 							set_size_and_pinuse_of_free_chunk(p, psize);
 | |
| 							if(p == fm->dv) {
 | |
| 								fm->dvsize = psize;
 | |
| 								goto postaction;
 | |
| 							}
 | |
| 						}
 | |
| 					} else
 | |
| 						set_free_with_pinuse(p, psize, next);
 | |
| 
 | |
| 					if(is_small(psize)) {
 | |
| 						insert_small_chunk(fm, p, psize);
 | |
| 						check_free_chunk(fm, p);
 | |
| 					} else {
 | |
| 						tchunkptr tp = (tchunkptr) p;
 | |
| 						insert_large_chunk(fm, tp, psize);
 | |
| 						check_free_chunk(fm, p);
 | |
| 						if(--fm->release_checks == 0)
 | |
| 							release_unused_segments(fm);
 | |
| 					}
 | |
| 					goto postaction;
 | |
| 				}
 | |
| 			}
 | |
| 		      erroraction:
 | |
| 			USAGE_ERROR_ACTION(fm, p);
 | |
| 		      postaction:
 | |
| 			POSTACTION(fm);
 | |
| 		}
 | |
| 	}
 | |
| #if !FOOTERS
 | |
| #undef fm
 | |
| #endif /* FOOTERS */
 | |
| }
 | |
| 
 | |
| void *dlcalloc(size_t n_elements, size_t elem_size)
 | |
| {
 | |
| 	void *mem;
 | |
| 	size_t req = 0;
 | |
| 	if(n_elements != 0) {
 | |
| 		req = n_elements * elem_size;
 | |
| 		if(((n_elements | elem_size) & ~(size_t) 0xffff) && (req / n_elements != elem_size))
 | |
| 			req = MAX_SIZE_T;	/* force downstream failure on overflow */
 | |
| 	}
 | |
| 	mem = dlmalloc(req);
 | |
| 	if(mem != 0 && calloc_must_clear(mem2chunk(mem)))
 | |
| 		memset(mem, 0, req);
 | |
| 	return mem;
 | |
| }
 | |
| 
 | |
| #endif /* !ONLY_MSPACES */
 | |
| 
 | |
| /* ------------ Internal support for realloc, memalign, etc -------------- */
 | |
| 
 | |
| /* Try to realloc; only in-place unless can_move true */
 | |
| static mchunkptr try_realloc_chunk(mstate m, mchunkptr p, size_t nb, int can_move)
 | |
| {
 | |
| 	mchunkptr newp = 0;
 | |
| 	size_t oldsize = chunksize(p);
 | |
| 	mchunkptr next = chunk_plus_offset(p, oldsize);
 | |
| 	if(RTCHECK(ok_address(m, p) && ok_inuse(p) && ok_next(p, next) && ok_pinuse(next))) {
 | |
| 		if(is_mmapped(p)) {
 | |
| 			newp = mmap_resize(m, p, nb, can_move);
 | |
| 		} else if(oldsize >= nb) {	/* already big enough */
 | |
| 			size_t rsize = oldsize - nb;
 | |
| 			if(rsize >= MIN_CHUNK_SIZE) {	/* split off remainder */
 | |
| 				mchunkptr r = chunk_plus_offset(p, nb);
 | |
| 				set_inuse(m, p, nb);
 | |
| 				set_inuse(m, r, rsize);
 | |
| 				dispose_chunk(m, r, rsize);
 | |
| 			}
 | |
| 			newp = p;
 | |
| 		} else if(next == m->top) {	/* extend into top */
 | |
| 			if(oldsize + m->topsize > nb) {
 | |
| 				size_t newsize = oldsize + m->topsize;
 | |
| 				size_t newtopsize = newsize - nb;
 | |
| 				mchunkptr newtop = chunk_plus_offset(p, nb);
 | |
| 				set_inuse(m, p, nb);
 | |
| 				newtop->head = newtopsize | PINUSE_BIT;
 | |
| 				m->top = newtop;
 | |
| 				m->topsize = newtopsize;
 | |
| 				newp = p;
 | |
| 			}
 | |
| 		} else if(next == m->dv) {	/* extend into dv */
 | |
| 			size_t dvs = m->dvsize;
 | |
| 			if(oldsize + dvs >= nb) {
 | |
| 				size_t dsize = oldsize + dvs - nb;
 | |
| 				if(dsize >= MIN_CHUNK_SIZE) {
 | |
| 					mchunkptr r = chunk_plus_offset(p, nb);
 | |
| 					mchunkptr n = chunk_plus_offset(r, dsize);
 | |
| 					set_inuse(m, p, nb);
 | |
| 					set_size_and_pinuse_of_free_chunk(r, dsize);
 | |
| 					clear_pinuse(n);
 | |
| 					m->dvsize = dsize;
 | |
| 					m->dv = r;
 | |
| 				} else {	/* exhaust dv */
 | |
| 					size_t newsize = oldsize + dvs;
 | |
| 					set_inuse(m, p, newsize);
 | |
| 					m->dvsize = 0;
 | |
| 					m->dv = 0;
 | |
| 				}
 | |
| 				newp = p;
 | |
| 			}
 | |
| 		} else if(!cinuse(next)) {	/* extend into next free chunk */
 | |
| 			size_t nextsize = chunksize(next);
 | |
| 			if(oldsize + nextsize >= nb) {
 | |
| 				size_t rsize = oldsize + nextsize - nb;
 | |
| 				unlink_chunk(m, next, nextsize);
 | |
| 				if(rsize < MIN_CHUNK_SIZE) {
 | |
| 					size_t newsize = oldsize + nextsize;
 | |
| 					set_inuse(m, p, newsize);
 | |
| 				} else {
 | |
| 					mchunkptr r = chunk_plus_offset(p, nb);
 | |
| 					set_inuse(m, p, nb);
 | |
| 					set_inuse(m, r, rsize);
 | |
| 					dispose_chunk(m, r, rsize);
 | |
| 				}
 | |
| 				newp = p;
 | |
| 			}
 | |
| 		}
 | |
| 	} else {
 | |
| 		USAGE_ERROR_ACTION(m, chunk2mem(p));
 | |
| 	}
 | |
| 	return newp;
 | |
| }
 | |
| 
 | |
| static void *internal_memalign(mstate m, size_t alignment, size_t bytes)
 | |
| {
 | |
| 	void *mem = 0;
 | |
| 	if(alignment < MIN_CHUNK_SIZE)	/* must be at least a minimum chunk size */
 | |
| 		alignment = MIN_CHUNK_SIZE;
 | |
| 	if((alignment & (alignment - SIZE_T_ONE)) != 0) {	/* Ensure a power of 2 */
 | |
| 		size_t a = MALLOC_ALIGNMENT << 1;
 | |
| 		while(a < alignment)
 | |
| 			a <<= 1;
 | |
| 		alignment = a;
 | |
| 	}
 | |
| 	if(bytes >= MAX_REQUEST - alignment) {
 | |
| 		if(m != 0) {	/* Test isn't needed but avoids compiler warning */
 | |
| 			MALLOC_FAILURE_ACTION;
 | |
| 		}
 | |
| 	} else {
 | |
| 		size_t nb = request2size(bytes);
 | |
| 		size_t req = nb + alignment + MIN_CHUNK_SIZE - CHUNK_OVERHEAD;
 | |
| 		mem = internal_malloc(m, req);
 | |
| 		if(mem != 0) {
 | |
| 			mchunkptr p = mem2chunk(mem);
 | |
| 			if(PREACTION(m))
 | |
| 				return 0;
 | |
| 			if((((size_t) (mem)) & (alignment - 1)) != 0) {	/* misaligned */
 | |
| 				/*
 | |
| 				   Find an aligned spot inside chunk.  Since we need to give
 | |
| 				   back leading space in a chunk of at least MIN_CHUNK_SIZE, if
 | |
| 				   the first calculation places us at a spot with less than
 | |
| 				   MIN_CHUNK_SIZE leader, we can move to the next aligned spot.
 | |
| 				   We've allocated enough total room so that this is always
 | |
| 				   possible.
 | |
| 				 */
 | |
| 				char *br = (char *) mem2chunk((size_t) (((size_t) ((char *) mem + alignment - SIZE_T_ONE)) & -alignment));
 | |
| 				char *pos = ((size_t) (br - (char *) (p)) >= MIN_CHUNK_SIZE) ? br : br + alignment;
 | |
| 				mchunkptr newp = (mchunkptr) pos;
 | |
| 				size_t leadsize = pos - (char *) (p);
 | |
| 				size_t newsize = chunksize(p) - leadsize;
 | |
| 
 | |
| 				if(is_mmapped(p)) {	/* For mmapped chunks, just adjust offset */
 | |
| 					newp->prev_foot = p->prev_foot + leadsize;
 | |
| 					newp->head = newsize;
 | |
| 				} else {	/* Otherwise, give back leader, use the rest */
 | |
| 					set_inuse(m, newp, newsize);
 | |
| 					set_inuse(m, p, leadsize);
 | |
| 					dispose_chunk(m, p, leadsize);
 | |
| 				}
 | |
| 				p = newp;
 | |
| 			}
 | |
| 
 | |
| 			/* Give back spare room at the end */
 | |
| 			if(!is_mmapped(p)) {
 | |
| 				size_t size = chunksize(p);
 | |
| 				if(size > nb + MIN_CHUNK_SIZE) {
 | |
| 					size_t remainder_size = size - nb;
 | |
| 					mchunkptr remainder = chunk_plus_offset(p, nb);
 | |
| 					set_inuse(m, p, nb);
 | |
| 					set_inuse(m, remainder, remainder_size);
 | |
| 					dispose_chunk(m, remainder, remainder_size);
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			mem = chunk2mem(p);
 | |
| 			assert(chunksize(p) >= nb);
 | |
| 			assert(((size_t) mem & (alignment - 1)) == 0);
 | |
| 			check_inuse_chunk(m, p);
 | |
| 			POSTACTION(m);
 | |
| 		}
 | |
| 	}
 | |
| 	return mem;
 | |
| }
 | |
| 
 | |
| /*
 | |
|   Common support for independent_X routines, handling
 | |
|     all of the combinations that can result.
 | |
|   The opts arg has:
 | |
|     bit 0 set if all elements are same size (using sizes[0])
 | |
|     bit 1 set if elements should be zeroed
 | |
| */
 | |
| static void **ialloc(mstate m, size_t n_elements, size_t * sizes, int opts, void *chunks[])
 | |
| {
 | |
| 
 | |
| 	size_t element_size;	/* chunksize of each element, if all same */
 | |
| 	size_t contents_size;	/* total size of elements */
 | |
| 	size_t array_size;	/* request size of pointer array */
 | |
| 	void *mem;		/* malloced aggregate space */
 | |
| 	mchunkptr p;		/* corresponding chunk */
 | |
| 	size_t remainder_size;	/* remaining bytes while splitting */
 | |
| 	void **marray;		/* either "chunks" or malloced ptr array */
 | |
| 	mchunkptr array_chunk;	/* chunk for malloced ptr array */
 | |
| 	flag_t was_enabled;	/* to disable mmap */
 | |
| 	size_t size;
 | |
| 	size_t i;
 | |
| 
 | |
| 	ensure_initialization();
 | |
| 	/* compute array length, if needed */
 | |
| 	if(chunks != 0) {
 | |
| 		if(n_elements == 0)
 | |
| 			return chunks;	/* nothing to do */
 | |
| 		marray = chunks;
 | |
| 		array_size = 0;
 | |
| 	} else {
 | |
| 		/* if empty req, must still return chunk representing empty array */
 | |
| 		if(n_elements == 0)
 | |
| 			return (void **) internal_malloc(m, 0);
 | |
| 		marray = 0;
 | |
| 		array_size = request2size(n_elements * (sizeof(void *)));
 | |
| 	}
 | |
| 
 | |
| 	/* compute total element size */
 | |
| 	if(opts & 0x1) {	/* all-same-size */
 | |
| 		element_size = request2size(*sizes);
 | |
| 		contents_size = n_elements * element_size;
 | |
| 	} else {		/* add up all the sizes */
 | |
| 		element_size = 0;
 | |
| 		contents_size = 0;
 | |
| 		for(i = 0; i != n_elements; ++i)
 | |
| 			contents_size += request2size(sizes[i]);
 | |
| 	}
 | |
| 
 | |
| 	size = contents_size + array_size;
 | |
| 
 | |
| 	/*
 | |
| 	   Allocate the aggregate chunk.  First disable direct-mmapping so
 | |
| 	   malloc won't use it, since we would not be able to later
 | |
| 	   free/realloc space internal to a segregated mmap region.
 | |
| 	 */
 | |
| 	was_enabled = use_mmap(m);
 | |
| 	disable_mmap(m);
 | |
| 	mem = internal_malloc(m, size - CHUNK_OVERHEAD);
 | |
| 	if(was_enabled)
 | |
| 		enable_mmap(m);
 | |
| 	if(mem == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	if(PREACTION(m))
 | |
| 		return 0;
 | |
| 	p = mem2chunk(mem);
 | |
| 	remainder_size = chunksize(p);
 | |
| 
 | |
| 	assert(!is_mmapped(p));
 | |
| 
 | |
| 	if(opts & 0x2) {	/* optionally clear the elements */
 | |
| 		memset((size_t *) mem, 0, remainder_size - SIZE_T_SIZE - array_size);
 | |
| 	}
 | |
| 
 | |
| 	/* If not provided, allocate the pointer array as final part of chunk */
 | |
| 	if(marray == 0) {
 | |
| 		size_t array_chunk_size;
 | |
| 		array_chunk = chunk_plus_offset(p, contents_size);
 | |
| 		array_chunk_size = remainder_size - contents_size;
 | |
| 		marray = (void **) (chunk2mem(array_chunk));
 | |
| 		set_size_and_pinuse_of_inuse_chunk(m, array_chunk, array_chunk_size);
 | |
| 		remainder_size = contents_size;
 | |
| 	}
 | |
| 
 | |
| 	/* split out elements */
 | |
| 	for(i = 0;; ++i) {
 | |
| 		marray[i] = chunk2mem(p);
 | |
| 		if(i != n_elements - 1) {
 | |
| 			if(element_size != 0)
 | |
| 				size = element_size;
 | |
| 			else
 | |
| 				size = request2size(sizes[i]);
 | |
| 			remainder_size -= size;
 | |
| 			set_size_and_pinuse_of_inuse_chunk(m, p, size);
 | |
| 			p = chunk_plus_offset(p, size);
 | |
| 		} else {	/* the final element absorbs any overallocation slop */
 | |
| 			set_size_and_pinuse_of_inuse_chunk(m, p, remainder_size);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| #if DEBUG
 | |
| 	if(marray != chunks) {
 | |
| 		/* final element must have exactly exhausted chunk */
 | |
| 		if(element_size != 0) {
 | |
| 			assert(remainder_size == element_size);
 | |
| 		} else {
 | |
| 			assert(remainder_size == request2size(sizes[i]));
 | |
| 		}
 | |
| 		check_inuse_chunk(m, mem2chunk(marray));
 | |
| 	}
 | |
| 	for(i = 0; i != n_elements; ++i)
 | |
| 		check_inuse_chunk(m, mem2chunk(marray[i]));
 | |
| 
 | |
| #endif /* DEBUG */
 | |
| 
 | |
| 	POSTACTION(m);
 | |
| 	return marray;
 | |
| }
 | |
| 
 | |
| /* Try to free all pointers in the given array.
 | |
|    Note: this could be made faster, by delaying consolidation,
 | |
|    at the price of disabling some user integrity checks, We
 | |
|    still optimize some consolidations by combining adjacent
 | |
|    chunks before freeing, which will occur often if allocated
 | |
|    with ialloc or the array is sorted.
 | |
| */
 | |
| static size_t internal_bulk_free(mstate m, void *array[], size_t nelem)
 | |
| {
 | |
| 	size_t unfreed = 0;
 | |
| 	if(!PREACTION(m)) {
 | |
| 		void **a;
 | |
| 		void **fence = &(array[nelem]);
 | |
| 		for(a = array; a != fence; ++a) {
 | |
| 			void *mem = *a;
 | |
| 			if(mem != 0) {
 | |
| 				mchunkptr p = mem2chunk(mem);
 | |
| 				size_t psize = chunksize(p);
 | |
| #if FOOTERS
 | |
| 				if(get_mstate_for(p) != m) {
 | |
| 					++unfreed;
 | |
| 					continue;
 | |
| 				}
 | |
| #endif
 | |
| 				check_inuse_chunk(m, p);
 | |
| 				*a = 0;
 | |
| 				if(RTCHECK(ok_address(m, p) && ok_inuse(p))) {
 | |
| 					void **b = a + 1;	/* try to merge with next chunk */
 | |
| 					mchunkptr next = next_chunk(p);
 | |
| 					if(b != fence && *b == chunk2mem(next)) {
 | |
| 						size_t newsize = chunksize(next) + psize;
 | |
| 						set_inuse(m, p, newsize);
 | |
| 						*b = chunk2mem(p);
 | |
| 					} else
 | |
| 						dispose_chunk(m, p, psize);
 | |
| 				} else {
 | |
| 					CORRUPTION_ERROR_ACTION(m);
 | |
| 					break;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 		if(should_trim(m, m->topsize))
 | |
| 			sys_trim(m, 0);
 | |
| 		POSTACTION(m);
 | |
| 	}
 | |
| 	return unfreed;
 | |
| }
 | |
| 
 | |
| /* Traversal */
 | |
| #if MALLOC_INSPECT_ALL
 | |
| static void internal_inspect_all(mstate m, void (*handler) (void *start, void *end, size_t used_bytes, void *callback_arg), void *arg)
 | |
| {
 | |
| 	if(is_initialized(m)) {
 | |
| 		mchunkptr top = m->top;
 | |
| 		msegmentptr s;
 | |
| 		for(s = &m->seg; s != 0; s = s->next) {
 | |
| 			mchunkptr q = align_as_chunk(s->base);
 | |
| 			while(segment_holds(s, q) && q->head != FENCEPOST_HEAD) {
 | |
| 				mchunkptr next = next_chunk(q);
 | |
| 				size_t sz = chunksize(q);
 | |
| 				size_t used;
 | |
| 				void *start;
 | |
| 				if(is_inuse(q)) {
 | |
| 					used = sz - CHUNK_OVERHEAD;	/* must not be mmapped */
 | |
| 					start = chunk2mem(q);
 | |
| 				} else {
 | |
| 					used = 0;
 | |
| 					if(is_small(sz)) {	/* offset by possible bookkeeping */
 | |
| 						start = (void *) ((char *) q + sizeof(struct malloc_chunk));
 | |
| 					} else {
 | |
| 						start = (void *) ((char *) q + sizeof(struct malloc_tree_chunk));
 | |
| 					}
 | |
| 				}
 | |
| 				if(start < (void *) next)	/* skip if all space is bookkeeping */
 | |
| 					handler(start, next, used, arg);
 | |
| 				if(q == top)
 | |
| 					break;
 | |
| 				q = next;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| #endif /* MALLOC_INSPECT_ALL */
 | |
| 
 | |
| /* ------------------ Exported realloc, memalign, etc -------------------- */
 | |
| 
 | |
| #if !ONLY_MSPACES
 | |
| 
 | |
| void *dlrealloc(void *oldmem, size_t bytes)
 | |
| {
 | |
| 	void *mem = 0;
 | |
| 	if(oldmem == 0) {
 | |
| 		mem = dlmalloc(bytes);
 | |
| 	} else if(bytes >= MAX_REQUEST) {
 | |
| 		MALLOC_FAILURE_ACTION;
 | |
| 	}
 | |
| #ifdef REALLOC_ZERO_BYTES_FREES
 | |
| 	else if(bytes == 0) {
 | |
| 		dlfree(oldmem);
 | |
| 	}
 | |
| #endif /* REALLOC_ZERO_BYTES_FREES */
 | |
| 	else {
 | |
| 		size_t nb = request2size(bytes);
 | |
| 		mchunkptr oldp = mem2chunk(oldmem);
 | |
| #if ! FOOTERS
 | |
| 		mstate m = gm;
 | |
| #else /* FOOTERS */
 | |
| 		mstate m = get_mstate_for(oldp);
 | |
| 		if(!ok_magic(m)) {
 | |
| 			USAGE_ERROR_ACTION(m, oldmem);
 | |
| 			return 0;
 | |
| 		}
 | |
| #endif /* FOOTERS */
 | |
| 		if(!PREACTION(m)) {
 | |
| 			mchunkptr newp = try_realloc_chunk(m, oldp, nb, 1);
 | |
| 			POSTACTION(m);
 | |
| 			if(newp != 0) {
 | |
| 				check_inuse_chunk(m, newp);
 | |
| 				mem = chunk2mem(newp);
 | |
| 			} else {
 | |
| 				mem = internal_malloc(m, bytes);
 | |
| 				if(mem != 0) {
 | |
| 					size_t oc = chunksize(oldp) - overhead_for(oldp);
 | |
| 					memcpy(mem, oldmem, (oc < bytes) ? oc : bytes);
 | |
| 					internal_free(m, oldmem);
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	return mem;
 | |
| }
 | |
| 
 | |
| void *dlrealloc_in_place(void *oldmem, size_t bytes)
 | |
| {
 | |
| 	void *mem = 0;
 | |
| 	if(oldmem != 0) {
 | |
| 		if(bytes >= MAX_REQUEST) {
 | |
| 			MALLOC_FAILURE_ACTION;
 | |
| 		} else {
 | |
| 			size_t nb = request2size(bytes);
 | |
| 			mchunkptr oldp = mem2chunk(oldmem);
 | |
| #if ! FOOTERS
 | |
| 			mstate m = gm;
 | |
| #else /* FOOTERS */
 | |
| 			mstate m = get_mstate_for(oldp);
 | |
| 			if(!ok_magic(m)) {
 | |
| 				USAGE_ERROR_ACTION(m, oldmem);
 | |
| 				return 0;
 | |
| 			}
 | |
| #endif /* FOOTERS */
 | |
| 			if(!PREACTION(m)) {
 | |
| 				mchunkptr newp = try_realloc_chunk(m, oldp, nb, 0);
 | |
| 				POSTACTION(m);
 | |
| 				if(newp == oldp) {
 | |
| 					check_inuse_chunk(m, newp);
 | |
| 					mem = oldmem;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	return mem;
 | |
| }
 | |
| 
 | |
| void *dlmemalign(size_t alignment, size_t bytes)
 | |
| {
 | |
| 	if(alignment <= MALLOC_ALIGNMENT) {
 | |
| 		return dlmalloc(bytes);
 | |
| 	}
 | |
| 	return internal_memalign(gm, alignment, bytes);
 | |
| }
 | |
| 
 | |
| int dlposix_memalign(void **pp, size_t alignment, size_t bytes)
 | |
| {
 | |
| 	void *mem = 0;
 | |
| 	if(alignment == MALLOC_ALIGNMENT)
 | |
| 		mem = dlmalloc(bytes);
 | |
| 	else {
 | |
| 		size_t d = alignment / sizeof(void *);
 | |
| 		size_t r = alignment % sizeof(void *);
 | |
| 		if(r != 0 || d == 0 || (d & (d - SIZE_T_ONE)) != 0)
 | |
| 			return KERROR_INVALID_REQUEST;
 | |
| 		else if(bytes <= MAX_REQUEST - alignment) {
 | |
| 			if(alignment < MIN_CHUNK_SIZE)
 | |
| 				alignment = MIN_CHUNK_SIZE;
 | |
| 			mem = internal_memalign(gm, alignment, bytes);
 | |
| 		}
 | |
| 	}
 | |
| 	if(mem == 0)
 | |
| 		return ENOMEM;
 | |
| 	else {
 | |
| 		*pp = mem;
 | |
| 		return 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void *dlvalloc(size_t bytes)
 | |
| {
 | |
| 	size_t pagesz;
 | |
| 	ensure_initialization();
 | |
| 	pagesz = mparams.page_size;
 | |
| 	return dlmemalign(pagesz, bytes);
 | |
| }
 | |
| 
 | |
| void *dlpvalloc(size_t bytes)
 | |
| {
 | |
| 	size_t pagesz;
 | |
| 	ensure_initialization();
 | |
| 	pagesz = mparams.page_size;
 | |
| 	return dlmemalign(pagesz, (bytes + pagesz - SIZE_T_ONE) & ~(pagesz - SIZE_T_ONE));
 | |
| }
 | |
| 
 | |
| void **dlindependent_calloc(size_t n_elements, size_t elem_size, void *chunks[])
 | |
| {
 | |
| 	size_t sz = elem_size;	/* serves as 1-element array */
 | |
| 	return ialloc(gm, n_elements, &sz, 3, chunks);
 | |
| }
 | |
| 
 | |
| void **dlindependent_comalloc(size_t n_elements, size_t sizes[], void *chunks[])
 | |
| {
 | |
| 	return ialloc(gm, n_elements, sizes, 0, chunks);
 | |
| }
 | |
| 
 | |
| size_t dlbulk_free(void *array[], size_t nelem)
 | |
| {
 | |
| 	return internal_bulk_free(gm, array, nelem);
 | |
| }
 | |
| 
 | |
| #if MALLOC_INSPECT_ALL
 | |
| void dlmalloc_inspect_all(void (*handler) (void *start, void *end, size_t used_bytes, void *callback_arg), void *arg)
 | |
| {
 | |
| 	ensure_initialization();
 | |
| 	if(!PREACTION(gm)) {
 | |
| 		internal_inspect_all(gm, handler, arg);
 | |
| 		POSTACTION(gm);
 | |
| 	}
 | |
| }
 | |
| #endif /* MALLOC_INSPECT_ALL */
 | |
| 
 | |
| int dlmalloc_trim(size_t pad)
 | |
| {
 | |
| 	int result = 0;
 | |
| 	ensure_initialization();
 | |
| 	if(!PREACTION(gm)) {
 | |
| 		result = sys_trim(gm, pad);
 | |
| 		POSTACTION(gm);
 | |
| 	}
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| size_t dlmalloc_footprint(void)
 | |
| {
 | |
| 	return gm->footprint;
 | |
| }
 | |
| 
 | |
| size_t dlmalloc_max_footprint(void)
 | |
| {
 | |
| 	return gm->max_footprint;
 | |
| }
 | |
| 
 | |
| size_t dlmalloc_footprint_limit(void)
 | |
| {
 | |
| 	size_t maf = gm->footprint_limit;
 | |
| 	return maf == 0 ? MAX_SIZE_T : maf;
 | |
| }
 | |
| 
 | |
| size_t dlmalloc_set_footprint_limit(size_t bytes)
 | |
| {
 | |
| 	size_t result;		/* invert sense of 0 */
 | |
| 	if(bytes == 0)
 | |
| 		result = granularity_align(1);	/* Use minimal size */
 | |
| 	if(bytes == MAX_SIZE_T)
 | |
| 		result = 0;	/* disable */
 | |
| 	else
 | |
| 		result = granularity_align(bytes);
 | |
| 	return gm->footprint_limit = result;
 | |
| }
 | |
| 
 | |
| #if !NO_MALLINFO
 | |
| struct mallinfo dlmallinfo(void)
 | |
| {
 | |
| 	return internal_mallinfo(gm);
 | |
| }
 | |
| #endif /* NO_MALLINFO */
 | |
| 
 | |
| #if !NO_MALLOC_STATS
 | |
| void dlmalloc_stats()
 | |
| {
 | |
| 	internal_malloc_stats(gm);
 | |
| }
 | |
| #endif /* NO_MALLOC_STATS */
 | |
| 
 | |
| int dlmallopt(int param_number, int value)
 | |
| {
 | |
| 	return change_mparam(param_number, value);
 | |
| }
 | |
| 
 | |
| size_t dlmalloc_usable_size(void *mem)
 | |
| {
 | |
| 	if(mem != 0) {
 | |
| 		mchunkptr p = mem2chunk(mem);
 | |
| 		if(is_inuse(p))
 | |
| 			return chunksize(p) - overhead_for(p);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #endif /* !ONLY_MSPACES */
 | |
| 
 | |
| /* ----------------------------- user mspaces ---------------------------- */
 | |
| 
 | |
| #if MSPACES
 | |
| 
 | |
| static mstate init_user_mstate(char *tbase, size_t tsize)
 | |
| {
 | |
| 	size_t msize = pad_request(sizeof(struct malloc_state));
 | |
| 	mchunkptr mn;
 | |
| 	mchunkptr msp = align_as_chunk(tbase);
 | |
| 	mstate m = (mstate) (chunk2mem(msp));
 | |
| 	memset(m, 0, msize);
 | |
| 	(void) INITIAL_LOCK(&m->mutex);
 | |
| 	msp->head = (msize | INUSE_BITS);
 | |
| 	m->seg.base = m->least_addr = tbase;
 | |
| 	m->seg.size = m->footprint = m->max_footprint = tsize;
 | |
| 	m->magic = mparams.magic;
 | |
| 	m->release_checks = MAX_RELEASE_CHECK_RATE;
 | |
| 	m->mflags = mparams.default_mflags;
 | |
| 	m->extp = 0;
 | |
| 	m->exts = 0;
 | |
| 	disable_contiguous(m);
 | |
| 	init_bins(m);
 | |
| 	mn = next_chunk(mem2chunk(m));
 | |
| 	init_top(m, mn, (size_t) ((tbase + tsize) - (char *) mn) - TOP_FOOT_SIZE);
 | |
| 	check_top_chunk(m, m->top);
 | |
| 	return m;
 | |
| }
 | |
| 
 | |
| mspace create_mspace(size_t capacity, int locked)
 | |
| {
 | |
| 	mstate m = 0;
 | |
| 	size_t msize;
 | |
| 	ensure_initialization();
 | |
| 	msize = pad_request(sizeof(struct malloc_state));
 | |
| 	if(capacity < (size_t) - (msize + TOP_FOOT_SIZE + mparams.page_size)) {
 | |
| 		size_t rs = ((capacity == 0) ? mparams.granularity : (capacity + TOP_FOOT_SIZE + msize));
 | |
| 		size_t tsize = granularity_align(rs);
 | |
| 		char *tbase = (char *) (CALL_MMAP(tsize));
 | |
| 		if(tbase != CMFAIL) {
 | |
| 			m = init_user_mstate(tbase, tsize);
 | |
| 			m->seg.sflags = USE_MMAP_BIT;
 | |
| 			set_lock(m, locked);
 | |
| 		}
 | |
| 	}
 | |
| 	return (mspace) m;
 | |
| }
 | |
| 
 | |
| mspace create_mspace_with_base(void *base, size_t capacity, int locked)
 | |
| {
 | |
| 	mstate m = 0;
 | |
| 	size_t msize;
 | |
| 	ensure_initialization();
 | |
| 	msize = pad_request(sizeof(struct malloc_state));
 | |
| 	if(capacity > msize + TOP_FOOT_SIZE && capacity < (size_t) - (msize + TOP_FOOT_SIZE + mparams.page_size)) {
 | |
| 		m = init_user_mstate((char *) base, capacity);
 | |
| 		m->seg.sflags = EXTERN_BIT;
 | |
| 		set_lock(m, locked);
 | |
| 	}
 | |
| 	return (mspace) m;
 | |
| }
 | |
| 
 | |
| int mspace_track_large_chunks(mspace msp, int enable)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	mstate ms = (mstate) msp;
 | |
| 	if(!PREACTION(ms)) {
 | |
| 		if(!use_mmap(ms)) {
 | |
| 			ret = 1;
 | |
| 		}
 | |
| 		if(!enable) {
 | |
| 			enable_mmap(ms);
 | |
| 		} else {
 | |
| 			disable_mmap(ms);
 | |
| 		}
 | |
| 		POSTACTION(ms);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| size_t destroy_mspace(mspace msp)
 | |
| {
 | |
| 	size_t freed = 0;
 | |
| 	mstate ms = (mstate) msp;
 | |
| 	if(ok_magic(ms)) {
 | |
| 		msegmentptr sp = &ms->seg;
 | |
| 		(void) DESTROY_LOCK(&ms->mutex);	/* destroy before unmapped */
 | |
| 		while(sp != 0) {
 | |
| 			char *base = sp->base;
 | |
| 			size_t size = sp->size;
 | |
| 			flag_t flag = sp->sflags;
 | |
| 			(void) base;	/* placate people compiling -Wunused-variable */
 | |
| 			sp = sp->next;
 | |
| 			if((flag & USE_MMAP_BIT) && !(flag & EXTERN_BIT) && CALL_MUNMAP(base, size) == 0)
 | |
| 				freed += size;
 | |
| 		}
 | |
| 	} else {
 | |
| 		USAGE_ERROR_ACTION(ms, ms);
 | |
| 	}
 | |
| 	return freed;
 | |
| }
 | |
| 
 | |
| /*
 | |
|   mspace versions of routines are near-clones of the global
 | |
|   versions. This is not so nice but better than the alternatives.
 | |
| */
 | |
| 
 | |
| void *mspace_malloc(mspace msp, size_t bytes)
 | |
| {
 | |
| 	mstate ms = (mstate) msp;
 | |
| 	if(!ok_magic(ms)) {
 | |
| 		USAGE_ERROR_ACTION(ms, ms);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	if(!PREACTION(ms)) {
 | |
| 		void *mem;
 | |
| 		size_t nb;
 | |
| 		if(bytes <= MAX_SMALL_REQUEST) {
 | |
| 			bindex_t idx;
 | |
| 			binmap_t smallbits;
 | |
| 			nb = (bytes < MIN_REQUEST) ? MIN_CHUNK_SIZE : pad_request(bytes);
 | |
| 			idx = small_index(nb);
 | |
| 			smallbits = ms->smallmap >> idx;
 | |
| 
 | |
| 			if((smallbits & 0x3U) != 0) {	/* Remainderless fit to a smallbin. */
 | |
| 				mchunkptr b, p;
 | |
| 				idx += ~smallbits & 1;	/* Uses next bin if idx empty */
 | |
| 				b = smallbin_at(ms, idx);
 | |
| 				p = b->fd;
 | |
| 				assert(chunksize(p) == small_index2size(idx));
 | |
| 				unlink_first_small_chunk(ms, b, p, idx);
 | |
| 				set_inuse_and_pinuse(ms, p, small_index2size(idx));
 | |
| 				mem = chunk2mem(p);
 | |
| 				check_malloced_chunk(ms, mem, nb);
 | |
| 				goto postaction;
 | |
| 			}
 | |
| 
 | |
| 			else if(nb > ms->dvsize) {
 | |
| 				if(smallbits != 0) {	/* Use chunk in next nonempty smallbin */
 | |
| 					mchunkptr b, p, r;
 | |
| 					size_t rsize;
 | |
| 					bindex_t i;
 | |
| 					binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx));
 | |
| 					binmap_t leastbit = least_bit(leftbits);
 | |
| 					compute_bit2idx(leastbit, i);
 | |
| 					b = smallbin_at(ms, i);
 | |
| 					p = b->fd;
 | |
| 					assert(chunksize(p) == small_index2size(i));
 | |
| 					unlink_first_small_chunk(ms, b, p, i);
 | |
| 					rsize = small_index2size(i) - nb;
 | |
| 					/* Fit here cannot be remainderless if 4byte sizes */
 | |
| 					if(SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE)
 | |
| 						set_inuse_and_pinuse(ms, p, small_index2size(i));
 | |
| 					else {
 | |
| 						set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
 | |
| 						r = chunk_plus_offset(p, nb);
 | |
| 						set_size_and_pinuse_of_free_chunk(r, rsize);
 | |
| 						replace_dv(ms, r, rsize);
 | |
| 					}
 | |
| 					mem = chunk2mem(p);
 | |
| 					check_malloced_chunk(ms, mem, nb);
 | |
| 					goto postaction;
 | |
| 				}
 | |
| 
 | |
| 				else if(ms->treemap != 0 && (mem = tmalloc_small(ms, nb)) != 0) {
 | |
| 					check_malloced_chunk(ms, mem, nb);
 | |
| 					goto postaction;
 | |
| 				}
 | |
| 			}
 | |
| 		} else if(bytes >= MAX_REQUEST)
 | |
| 			nb = MAX_SIZE_T;	/* Too big to allocate. Force failure (in sys alloc) */
 | |
| 		else {
 | |
| 			nb = pad_request(bytes);
 | |
| 			if(ms->treemap != 0 && (mem = tmalloc_large(ms, nb)) != 0) {
 | |
| 				check_malloced_chunk(ms, mem, nb);
 | |
| 				goto postaction;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if(nb <= ms->dvsize) {
 | |
| 			size_t rsize = ms->dvsize - nb;
 | |
| 			mchunkptr p = ms->dv;
 | |
| 			if(rsize >= MIN_CHUNK_SIZE) {	/* split dv */
 | |
| 				mchunkptr r = ms->dv = chunk_plus_offset(p, nb);
 | |
| 				ms->dvsize = rsize;
 | |
| 				set_size_and_pinuse_of_free_chunk(r, rsize);
 | |
| 				set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
 | |
| 			} else {	/* exhaust dv */
 | |
| 				size_t dvs = ms->dvsize;
 | |
| 				ms->dvsize = 0;
 | |
| 				ms->dv = 0;
 | |
| 				set_inuse_and_pinuse(ms, p, dvs);
 | |
| 			}
 | |
| 			mem = chunk2mem(p);
 | |
| 			check_malloced_chunk(ms, mem, nb);
 | |
| 			goto postaction;
 | |
| 		}
 | |
| 
 | |
| 		else if(nb < ms->topsize) {	/* Split top */
 | |
| 			size_t rsize = ms->topsize -= nb;
 | |
| 			mchunkptr p = ms->top;
 | |
| 			mchunkptr r = ms->top = chunk_plus_offset(p, nb);
 | |
| 			r->head = rsize | PINUSE_BIT;
 | |
| 			set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
 | |
| 			mem = chunk2mem(p);
 | |
| 			check_top_chunk(ms, ms->top);
 | |
| 			check_malloced_chunk(ms, mem, nb);
 | |
| 			goto postaction;
 | |
| 		}
 | |
| 
 | |
| 		mem = sys_alloc(ms, nb);
 | |
| 
 | |
| 	      postaction:
 | |
| 		POSTACTION(ms);
 | |
| 		return mem;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void mspace_free(mspace msp, void *mem)
 | |
| {
 | |
| 	if(mem != 0) {
 | |
| 		mchunkptr p = mem2chunk(mem);
 | |
| #if FOOTERS
 | |
| 		mstate fm = get_mstate_for(p);
 | |
| 		(void) msp;	/* placate people compiling -Wunused */
 | |
| #else /* FOOTERS */
 | |
| 		mstate fm = (mstate) msp;
 | |
| #endif /* FOOTERS */
 | |
| 		if(!ok_magic(fm)) {
 | |
| 			USAGE_ERROR_ACTION(fm, p);
 | |
| 			return;
 | |
| 		}
 | |
| 		if(!PREACTION(fm)) {
 | |
| 			check_inuse_chunk(fm, p);
 | |
| 			if(RTCHECK(ok_address(fm, p) && ok_inuse(p))) {
 | |
| 				size_t psize = chunksize(p);
 | |
| 				mchunkptr next = chunk_plus_offset(p, psize);
 | |
| 				if(!pinuse(p)) {
 | |
| 					size_t prevsize = p->prev_foot;
 | |
| 					if(is_mmapped(p)) {
 | |
| 						psize += prevsize + MMAP_FOOT_PAD;
 | |
| 						if(CALL_MUNMAP((char *) p - prevsize, psize) == 0)
 | |
| 							fm->footprint -= psize;
 | |
| 						goto postaction;
 | |
| 					} else {
 | |
| 						mchunkptr prev = chunk_minus_offset(p, prevsize);
 | |
| 						psize += prevsize;
 | |
| 						p = prev;
 | |
| 						if(RTCHECK(ok_address(fm, prev))) {	/* consolidate backward */
 | |
| 							if(p != fm->dv) {
 | |
| 								unlink_chunk(fm, p, prevsize);
 | |
| 							} else if((next->head & INUSE_BITS) == INUSE_BITS) {
 | |
| 								fm->dvsize = psize;
 | |
| 								set_free_with_pinuse(p, psize, next);
 | |
| 								goto postaction;
 | |
| 							}
 | |
| 						} else
 | |
| 							goto erroraction;
 | |
| 					}
 | |
| 				}
 | |
| 
 | |
| 				if(RTCHECK(ok_next(p, next) && ok_pinuse(next))) {
 | |
| 					if(!cinuse(next)) {	/* consolidate forward */
 | |
| 						if(next == fm->top) {
 | |
| 							size_t tsize = fm->topsize += psize;
 | |
| 							fm->top = p;
 | |
| 							p->head = tsize | PINUSE_BIT;
 | |
| 							if(p == fm->dv) {
 | |
| 								fm->dv = 0;
 | |
| 								fm->dvsize = 0;
 | |
| 							}
 | |
| 							if(should_trim(fm, tsize))
 | |
| 								sys_trim(fm, 0);
 | |
| 							goto postaction;
 | |
| 						} else if(next == fm->dv) {
 | |
| 							size_t dsize = fm->dvsize += psize;
 | |
| 							fm->dv = p;
 | |
| 							set_size_and_pinuse_of_free_chunk(p, dsize);
 | |
| 							goto postaction;
 | |
| 						} else {
 | |
| 							size_t nsize = chunksize(next);
 | |
| 							psize += nsize;
 | |
| 							unlink_chunk(fm, next, nsize);
 | |
| 							set_size_and_pinuse_of_free_chunk(p, psize);
 | |
| 							if(p == fm->dv) {
 | |
| 								fm->dvsize = psize;
 | |
| 								goto postaction;
 | |
| 							}
 | |
| 						}
 | |
| 					} else
 | |
| 						set_free_with_pinuse(p, psize, next);
 | |
| 
 | |
| 					if(is_small(psize)) {
 | |
| 						insert_small_chunk(fm, p, psize);
 | |
| 						check_free_chunk(fm, p);
 | |
| 					} else {
 | |
| 						tchunkptr tp = (tchunkptr) p;
 | |
| 						insert_large_chunk(fm, tp, psize);
 | |
| 						check_free_chunk(fm, p);
 | |
| 						if(--fm->release_checks == 0)
 | |
| 							release_unused_segments(fm);
 | |
| 					}
 | |
| 					goto postaction;
 | |
| 				}
 | |
| 			}
 | |
| 		      erroraction:
 | |
| 			USAGE_ERROR_ACTION(fm, p);
 | |
| 		      postaction:
 | |
| 			POSTACTION(fm);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void *mspace_calloc(mspace msp, size_t n_elements, size_t elem_size)
 | |
| {
 | |
| 	void *mem;
 | |
| 	size_t req = 0;
 | |
| 	mstate ms = (mstate) msp;
 | |
| 	if(!ok_magic(ms)) {
 | |
| 		USAGE_ERROR_ACTION(ms, ms);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	if(n_elements != 0) {
 | |
| 		req = n_elements * elem_size;
 | |
| 		if(((n_elements | elem_size) & ~(size_t) 0xffff) && (req / n_elements != elem_size))
 | |
| 			req = MAX_SIZE_T;	/* force downstream failure on overflow */
 | |
| 	}
 | |
| 	mem = internal_malloc(ms, req);
 | |
| 	if(mem != 0 && calloc_must_clear(mem2chunk(mem)))
 | |
| 		memset(mem, 0, req);
 | |
| 	return mem;
 | |
| }
 | |
| 
 | |
| void *mspace_realloc(mspace msp, void *oldmem, size_t bytes)
 | |
| {
 | |
| 	void *mem = 0;
 | |
| 	if(oldmem == 0) {
 | |
| 		mem = mspace_malloc(msp, bytes);
 | |
| 	} else if(bytes >= MAX_REQUEST) {
 | |
| 		MALLOC_FAILURE_ACTION;
 | |
| 	}
 | |
| #ifdef REALLOC_ZERO_BYTES_FREES
 | |
| 	else if(bytes == 0) {
 | |
| 		mspace_free(msp, oldmem);
 | |
| 	}
 | |
| #endif /* REALLOC_ZERO_BYTES_FREES */
 | |
| 	else {
 | |
| 		size_t nb = request2size(bytes);
 | |
| 		mchunkptr oldp = mem2chunk(oldmem);
 | |
| #if ! FOOTERS
 | |
| 		mstate m = (mstate) msp;
 | |
| #else /* FOOTERS */
 | |
| 		mstate m = get_mstate_for(oldp);
 | |
| 		if(!ok_magic(m)) {
 | |
| 			USAGE_ERROR_ACTION(m, oldmem);
 | |
| 			return 0;
 | |
| 		}
 | |
| #endif /* FOOTERS */
 | |
| 		if(!PREACTION(m)) {
 | |
| 			mchunkptr newp = try_realloc_chunk(m, oldp, nb, 1);
 | |
| 			POSTACTION(m);
 | |
| 			if(newp != 0) {
 | |
| 				check_inuse_chunk(m, newp);
 | |
| 				mem = chunk2mem(newp);
 | |
| 			} else {
 | |
| 				mem = mspace_malloc(m, bytes);
 | |
| 				if(mem != 0) {
 | |
| 					size_t oc = chunksize(oldp) - overhead_for(oldp);
 | |
| 					memcpy(mem, oldmem, (oc < bytes) ? oc : bytes);
 | |
| 					mspace_free(m, oldmem);
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	return mem;
 | |
| }
 | |
| 
 | |
| void *mspace_realloc_in_place(mspace msp, void *oldmem, size_t bytes)
 | |
| {
 | |
| 	void *mem = 0;
 | |
| 	if(oldmem != 0) {
 | |
| 		if(bytes >= MAX_REQUEST) {
 | |
| 			MALLOC_FAILURE_ACTION;
 | |
| 		} else {
 | |
| 			size_t nb = request2size(bytes);
 | |
| 			mchunkptr oldp = mem2chunk(oldmem);
 | |
| #if ! FOOTERS
 | |
| 			mstate m = (mstate) msp;
 | |
| #else /* FOOTERS */
 | |
| 			mstate m = get_mstate_for(oldp);
 | |
| 			(void) msp;	/* placate people compiling -Wunused */
 | |
| 			if(!ok_magic(m)) {
 | |
| 				USAGE_ERROR_ACTION(m, oldmem);
 | |
| 				return 0;
 | |
| 			}
 | |
| #endif /* FOOTERS */
 | |
| 			if(!PREACTION(m)) {
 | |
| 				mchunkptr newp = try_realloc_chunk(m, oldp, nb, 0);
 | |
| 				POSTACTION(m);
 | |
| 				if(newp == oldp) {
 | |
| 					check_inuse_chunk(m, newp);
 | |
| 					mem = oldmem;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	return mem;
 | |
| }
 | |
| 
 | |
| void *mspace_memalign(mspace msp, size_t alignment, size_t bytes)
 | |
| {
 | |
| 	mstate ms = (mstate) msp;
 | |
| 	if(!ok_magic(ms)) {
 | |
| 		USAGE_ERROR_ACTION(ms, ms);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	if(alignment <= MALLOC_ALIGNMENT)
 | |
| 		return mspace_malloc(msp, bytes);
 | |
| 	return internal_memalign(ms, alignment, bytes);
 | |
| }
 | |
| 
 | |
| void **mspace_independent_calloc(mspace msp, size_t n_elements, size_t elem_size, void *chunks[])
 | |
| {
 | |
| 	size_t sz = elem_size;	/* serves as 1-element array */
 | |
| 	mstate ms = (mstate) msp;
 | |
| 	if(!ok_magic(ms)) {
 | |
| 		USAGE_ERROR_ACTION(ms, ms);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	return ialloc(ms, n_elements, &sz, 3, chunks);
 | |
| }
 | |
| 
 | |
| void **mspace_independent_comalloc(mspace msp, size_t n_elements, size_t sizes[], void *chunks[])
 | |
| {
 | |
| 	mstate ms = (mstate) msp;
 | |
| 	if(!ok_magic(ms)) {
 | |
| 		USAGE_ERROR_ACTION(ms, ms);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	return ialloc(ms, n_elements, sizes, 0, chunks);
 | |
| }
 | |
| 
 | |
| size_t mspace_bulk_free(mspace msp, void *array[], size_t nelem)
 | |
| {
 | |
| 	return internal_bulk_free((mstate) msp, array, nelem);
 | |
| }
 | |
| 
 | |
| #if MALLOC_INSPECT_ALL
 | |
| void mspace_inspect_all(mspace msp, void (*handler) (void *start, void *end, size_t used_bytes, void *callback_arg), void *arg)
 | |
| {
 | |
| 	mstate ms = (mstate) msp;
 | |
| 	if(ok_magic(ms)) {
 | |
| 		if(!PREACTION(ms)) {
 | |
| 			internal_inspect_all(ms, handler, arg);
 | |
| 			POSTACTION(ms);
 | |
| 		}
 | |
| 	} else {
 | |
| 		USAGE_ERROR_ACTION(ms, ms);
 | |
| 	}
 | |
| }
 | |
| #endif /* MALLOC_INSPECT_ALL */
 | |
| 
 | |
| int mspace_trim(mspace msp, size_t pad)
 | |
| {
 | |
| 	int result = 0;
 | |
| 	mstate ms = (mstate) msp;
 | |
| 	if(ok_magic(ms)) {
 | |
| 		if(!PREACTION(ms)) {
 | |
| 			result = sys_trim(ms, pad);
 | |
| 			POSTACTION(ms);
 | |
| 		}
 | |
| 	} else {
 | |
| 		USAGE_ERROR_ACTION(ms, ms);
 | |
| 	}
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| #if !NO_MALLOC_STATS
 | |
| void mspace_malloc_stats(mspace msp)
 | |
| {
 | |
| 	mstate ms = (mstate) msp;
 | |
| 	if(ok_magic(ms)) {
 | |
| 		internal_malloc_stats(ms);
 | |
| 	} else {
 | |
| 		USAGE_ERROR_ACTION(ms, ms);
 | |
| 	}
 | |
| }
 | |
| #endif /* NO_MALLOC_STATS */
 | |
| 
 | |
| size_t mspace_footprint(mspace msp)
 | |
| {
 | |
| 	size_t result = 0;
 | |
| 	mstate ms = (mstate) msp;
 | |
| 	if(ok_magic(ms)) {
 | |
| 		result = ms->footprint;
 | |
| 	} else {
 | |
| 		USAGE_ERROR_ACTION(ms, ms);
 | |
| 	}
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| size_t mspace_max_footprint(mspace msp)
 | |
| {
 | |
| 	size_t result = 0;
 | |
| 	mstate ms = (mstate) msp;
 | |
| 	if(ok_magic(ms)) {
 | |
| 		result = ms->max_footprint;
 | |
| 	} else {
 | |
| 		USAGE_ERROR_ACTION(ms, ms);
 | |
| 	}
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| size_t mspace_footprint_limit(mspace msp)
 | |
| {
 | |
| 	size_t result = 0;
 | |
| 	mstate ms = (mstate) msp;
 | |
| 	if(ok_magic(ms)) {
 | |
| 		size_t maf = ms->footprint_limit;
 | |
| 		result = (maf == 0) ? MAX_SIZE_T : maf;
 | |
| 	} else {
 | |
| 		USAGE_ERROR_ACTION(ms, ms);
 | |
| 	}
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| size_t mspace_set_footprint_limit(mspace msp, size_t bytes)
 | |
| {
 | |
| 	size_t result = 0;
 | |
| 	mstate ms = (mstate) msp;
 | |
| 	if(ok_magic(ms)) {
 | |
| 		if(bytes == 0)
 | |
| 			result = granularity_align(1);	/* Use minimal size */
 | |
| 		if(bytes == MAX_SIZE_T)
 | |
| 			result = 0;	/* disable */
 | |
| 		else
 | |
| 			result = granularity_align(bytes);
 | |
| 		ms->footprint_limit = result;
 | |
| 	} else {
 | |
| 		USAGE_ERROR_ACTION(ms, ms);
 | |
| 	}
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| #if !NO_MALLINFO
 | |
| struct mallinfo mspace_mallinfo(mspace msp)
 | |
| {
 | |
| 	mstate ms = (mstate) msp;
 | |
| 	if(!ok_magic(ms)) {
 | |
| 		USAGE_ERROR_ACTION(ms, ms);
 | |
| 	}
 | |
| 	return internal_mallinfo(ms);
 | |
| }
 | |
| #endif /* NO_MALLINFO */
 | |
| 
 | |
| size_t mspace_usable_size(const void *mem)
 | |
| {
 | |
| 	if(mem != 0) {
 | |
| 		mchunkptr p = mem2chunk(mem);
 | |
| 		if(is_inuse(p))
 | |
| 			return chunksize(p) - overhead_for(p);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int mspace_mallopt(int param_number, int value)
 | |
| {
 | |
| 	return change_mparam(param_number, value);
 | |
| }
 | |
| 
 | |
| #endif /* MSPACES */
 | |
| 
 | |
| 
 | |
| /* -------------------- Alternative MORECORE functions ------------------- */
 | |
| 
 | |
| /*
 | |
|   Guidelines for creating a custom version of MORECORE:
 | |
| 
 | |
|   * For best performance, MORECORE should allocate in multiples of pagesize.
 | |
|   * MORECORE may allocate more memory than requested. (Or even less,
 | |
|       but this will usually result in a malloc failure.)
 | |
|   * MORECORE must not allocate memory when given argument zero, but
 | |
|       instead return one past the end address of memory from previous
 | |
|       nonzero call.
 | |
|   * For best performance, consecutive calls to MORECORE with positive
 | |
|       arguments should return increasing addresses, indicating that
 | |
|       space has been contiguously extended.
 | |
|   * Even though consecutive calls to MORECORE need not return contiguous
 | |
|       addresses, it must be OK for malloc'ed chunks to span multiple
 | |
|       regions in those cases where they do happen to be contiguous.
 | |
|   * MORECORE need not handle negative arguments -- it may instead
 | |
|       just return MFAIL when given negative arguments.
 | |
|       Negative arguments are always multiples of pagesize. MORECORE
 | |
|       must not misinterpret negative args as large positive unsigned
 | |
|       args. You can suppress all such calls from even occurring by defining
 | |
|       MORECORE_CANNOT_TRIM,
 | |
| 
 | |
|   As an example alternative MORECORE, here is a custom allocator
 | |
|   kindly contributed for pre-OSX macOS.  It uses virtually but not
 | |
|   necessarily physically contiguous non-paged memory (locked in,
 | |
|   present and won't get swapped out).  You can use it by uncommenting
 | |
|   this section, adding some #includes, and setting up the appropriate
 | |
|   defines above:
 | |
| 
 | |
|       #define MORECORE osMoreCore
 | |
| 
 | |
|   There is also a shutdown routine that should somehow be called for
 | |
|   cleanup upon program exit.
 | |
| 
 | |
|   #define MAX_POOL_ENTRIES 100
 | |
|   #define MINIMUM_MORECORE_SIZE  (64 * 1024U)
 | |
|   static int next_os_pool;
 | |
|   void *our_os_pools[MAX_POOL_ENTRIES];
 | |
| 
 | |
|   void *osMoreCore(int size)
 | |
|   {
 | |
|     void *ptr = 0;
 | |
|     static void *sbrk_top = 0;
 | |
| 
 | |
|     if (size > 0)
 | |
|     {
 | |
|       if (size < MINIMUM_MORECORE_SIZE)
 | |
|          size = MINIMUM_MORECORE_SIZE;
 | |
|       if (CurrentExecutionLevel() == kTaskLevel)
 | |
|          ptr = PoolAllocateResident(size + RM_PAGE_SIZE, 0);
 | |
|       if (ptr == 0)
 | |
|       {
 | |
|         return (void *) MFAIL;
 | |
|       }
 | |
|       // save ptrs so they can be freed during cleanup
 | |
|       our_os_pools[next_os_pool] = ptr;
 | |
|       next_os_pool++;
 | |
|       ptr = (void *) ((((size_t) ptr) + RM_PAGE_MASK) & ~RM_PAGE_MASK);
 | |
|       sbrk_top = (char *) ptr + size;
 | |
|       return ptr;
 | |
|     }
 | |
|     else if (size < 0)
 | |
|     {
 | |
|       // we don't currently support shrink behavior
 | |
|       return (void *) MFAIL;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|       return sbrk_top;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // cleanup any allocated memory pools
 | |
|   // called as last thing before shutting down driver
 | |
| 
 | |
|   void osCleanupMem(void)
 | |
|   {
 | |
|     void **ptr;
 | |
| 
 | |
|     for (ptr = our_os_pools; ptr < &our_os_pools[MAX_POOL_ENTRIES]; ptr++)
 | |
|       if (*ptr)
 | |
|       {
 | |
|          PoolDeallocate(*ptr);
 | |
|          *ptr = 0;
 | |
|       }
 | |
|   }
 | |
| 
 | |
| */
 | |
| 
 | |
| 
 | |
| /* -----------------------------------------------------------------------
 | |
| History:
 | |
|     v2.8.6 Wed Aug 29 06:57:58 2012  Doug Lea
 | |
|       * fix bad comparison in dlposix_memalign
 | |
|       * don't reuse adjusted asize in sys_alloc
 | |
|       * add LOCK_AT_FORK -- thanks to Kirill Artamonov for the suggestion
 | |
|       * reduce compiler warnings -- thanks to all who reported/suggested these
 | |
| 
 | |
|     v2.8.5 Sun May 22 10:26:02 2011  Doug Lea  (dl at gee)
 | |
|       * Always perform unlink checks unless INSECURE
 | |
|       * Add posix_memalign.
 | |
|       * Improve realloc to expand in more cases; expose realloc_in_place.
 | |
|         Thanks to Peter Buhr for the suggestion.
 | |
|       * Add footprint_limit, inspect_all, bulk_free. Thanks
 | |
|         to Barry Hayes and others for the suggestions.
 | |
|       * Internal refactorings to avoid calls while holding locks
 | |
|       * Use non-reentrant locks by default. Thanks to Roland McGrath
 | |
|         for the suggestion.
 | |
|       * Small fixes to mspace_destroy, reset_on_error.
 | |
|       * Various configuration extensions/changes. Thanks
 | |
|          to all who contributed these.
 | |
| 
 | |
|     V2.8.4a Thu Apr 28 14:39:43 2011 (dl at gee.cs.oswego.edu)
 | |
|       * Update Creative Commons URL
 | |
| 
 | |
|     V2.8.4 Wed May 27 09:56:23 2009  Doug Lea  (dl at gee)
 | |
|       * Use zeros instead of prev foot for is_mmapped
 | |
|       * Add mspace_track_large_chunks; thanks to Jean Brouwers
 | |
|       * Fix set_inuse in internal_realloc; thanks to Jean Brouwers
 | |
|       * Fix insufficient sys_alloc padding when using 16byte alignment
 | |
|       * Fix bad error check in mspace_footprint
 | |
|       * Adaptations for ptmalloc; thanks to Wolfram Gloger.
 | |
|       * Reentrant spin locks; thanks to Earl Chew and others
 | |
|       * Win32 improvements; thanks to Niall Douglas and Earl Chew
 | |
|       * Add NO_SEGMENT_TRAVERSAL and MAX_RELEASE_CHECK_RATE options
 | |
|       * Extension hook in malloc_state
 | |
|       * Various small adjustments to reduce warnings on some compilers
 | |
|       * Various configuration extensions/changes for more platforms. Thanks
 | |
|          to all who contributed these.
 | |
| 
 | |
|     V2.8.3 Thu Sep 22 11:16:32 2005  Doug Lea  (dl at gee)
 | |
|       * Add max_footprint functions
 | |
|       * Ensure all appropriate literals are size_t
 | |
|       * Fix conditional compilation problem for some #define settings
 | |
|       * Avoid concatenating segments with the one provided
 | |
|         in create_mspace_with_base
 | |
|       * Rename some variables to avoid compiler shadowing warnings
 | |
|       * Use explicit lock initialization.
 | |
|       * Better handling of sbrk interference.
 | |
|       * Simplify and fix segment insertion, trimming and mspace_destroy
 | |
|       * Reinstate REALLOC_ZERO_BYTES_FREES option from 2.7.x
 | |
|       * Thanks especially to Dennis Flanagan for help on these.
 | |
| 
 | |
|     V2.8.2 Sun Jun 12 16:01:10 2005  Doug Lea  (dl at gee)
 | |
|       * Fix memalign brace error.
 | |
| 
 | |
|     V2.8.1 Wed Jun  8 16:11:46 2005  Doug Lea  (dl at gee)
 | |
|       * Fix improper #endif nesting in C++
 | |
|       * Add explicit casts needed for C++
 | |
| 
 | |
|     V2.8.0 Mon May 30 14:09:02 2005  Doug Lea  (dl at gee)
 | |
|       * Use trees for large bins
 | |
|       * Support mspaces
 | |
|       * Use segments to unify sbrk-based and mmap-based system allocation,
 | |
|         removing need for emulation on most platforms without sbrk.
 | |
|       * Default safety checks
 | |
|       * Optional footer checks. Thanks to William Robertson for the idea.
 | |
|       * Internal code refactoring
 | |
|       * Incorporate suggestions and platform-specific changes.
 | |
|         Thanks to Dennis Flanagan, Colin Plumb, Niall Douglas,
 | |
|         Aaron Bachmann,  Emery Berger, and others.
 | |
|       * Speed up non-fastbin processing enough to remove fastbins.
 | |
|       * Remove useless cfree() to avoid conflicts with other apps.
 | |
|       * Remove internal memcpy, memset. Compilers handle builtins better.
 | |
|       * Remove some options that no one ever used and rename others.
 | |
| 
 | |
|     V2.7.2 Sat Aug 17 09:07:30 2002  Doug Lea  (dl at gee)
 | |
|       * Fix malloc_state bitmap array misdeclaration
 | |
| 
 | |
|     V2.7.1 Thu Jul 25 10:58:03 2002  Doug Lea  (dl at gee)
 | |
|       * Allow tuning of FIRST_SORTED_BIN_SIZE
 | |
|       * Use PTR_UINT as type for all ptr->int casts. Thanks to John Belmonte.
 | |
|       * Better detection and support for non-contiguousness of MORECORE.
 | |
|         Thanks to Andreas Mueller, Conal Walsh, and Wolfram Gloger
 | |
|       * Bypass most of malloc if no frees. Thanks To Emery Berger.
 | |
|       * Fix freeing of old top non-contiguous chunk im sysmalloc.
 | |
|       * Raised default trim and map thresholds to 256K.
 | |
|       * Fix mmap-related #defines. Thanks to Lubos Lunak.
 | |
|       * Fix copy macros; added LACKS_FCNTL_H. Thanks to Neal Walfield.
 | |
|       * Branch-free bin calculation
 | |
|       * Default trim and mmap thresholds now 256K.
 | |
| 
 | |
|     V2.7.0 Sun Mar 11 14:14:06 2001  Doug Lea  (dl at gee)
 | |
|       * Introduce independent_comalloc and independent_calloc.
 | |
|         Thanks to Michael Pachos for motivation and help.
 | |
|       * Make optional .h file available
 | |
|       * Allow > 2GB requests on 32bit systems.
 | |
|       * new WIN32 sbrk, mmap, munmap, lock code from <Walter@GeNeSys-e.de>.
 | |
|         Thanks also to Andreas Mueller <a.mueller at paradatec.de>,
 | |
|         and Anonymous.
 | |
|       * Allow override of MALLOC_ALIGNMENT (Thanks to Ruud Waij for
 | |
|         helping test this.)
 | |
|       * memalign: check alignment arg
 | |
|       * realloc: don't try to shift chunks backwards, since this
 | |
|         leads to  more fragmentation in some programs and doesn't
 | |
|         seem to help in any others.
 | |
|       * Collect all cases in malloc requiring system memory into sysmalloc
 | |
|       * Use mmap as backup to sbrk
 | |
|       * Place all internal state in malloc_state
 | |
|       * Introduce fastbins (although similar to 2.5.1)
 | |
|       * Many minor tunings and cosmetic improvements
 | |
|       * Introduce USE_PUBLIC_MALLOC_WRAPPERS, USE_MALLOC_LOCK
 | |
|       * Introduce MALLOC_FAILURE_ACTION, MORECORE_CONTIGUOUS
 | |
|         Thanks to Tony E. Bennett <tbennett@nvidia.com> and others.
 | |
|       * Include errno.h to support default failure action.
 | |
| 
 | |
|     V2.6.6 Sun Dec  5 07:42:19 1999  Doug Lea  (dl at gee)
 | |
|       * return null for negative arguments
 | |
|       * Added Several WIN32 cleanups from Martin C. Fong <mcfong at yahoo.com>
 | |
|          * Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h'
 | |
|           (e.g. WIN32 platforms)
 | |
|          * Cleanup header file inclusion for WIN32 platforms
 | |
|          * Cleanup code to avoid Microsoft Visual C++ compiler complaints
 | |
|          * Add 'USE_DL_PREFIX' to quickly allow co-existence with existing
 | |
|            memory allocation routines
 | |
|          * Set 'malloc_getpagesize' for WIN32 platforms (needs more work)
 | |
|          * Use 'assert' rather than 'ASSERT' in WIN32 code to conform to
 | |
|            usage of 'assert' in non-WIN32 code
 | |
|          * Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to
 | |
|            avoid infinite loop
 | |
|       * Always call 'fREe()' rather than 'free()'
 | |
| 
 | |
|     V2.6.5 Wed Jun 17 15:57:31 1998  Doug Lea  (dl at gee)
 | |
|       * Fixed ordering problem with boundary-stamping
 | |
| 
 | |
|     V2.6.3 Sun May 19 08:17:58 1996  Doug Lea  (dl at gee)
 | |
|       * Added pvalloc, as recommended by H.J. Liu
 | |
|       * Added 64bit pointer support mainly from Wolfram Gloger
 | |
|       * Added anonymously donated WIN32 sbrk emulation
 | |
|       * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen
 | |
|       * malloc_extend_top: fix mask error that caused wastage after
 | |
|         foreign sbrks
 | |
|       * Add linux mremap support code from HJ Liu
 | |
| 
 | |
|     V2.6.2 Tue Dec  5 06:52:55 1995  Doug Lea  (dl at gee)
 | |
|       * Integrated most documentation with the code.
 | |
|       * Add support for mmap, with help from
 | |
|         Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
 | |
|       * Use last_remainder in more cases.
 | |
|       * Pack bins using idea from  colin@nyx10.cs.du.edu
 | |
|       * Use ordered bins instead of best-fit threshhold
 | |
|       * Eliminate block-local decls to simplify tracing and debugging.
 | |
|       * Support another case of realloc via move into top
 | |
|       * Fix error occuring when initial sbrk_base not word-aligned.
 | |
|       * Rely on page size for units instead of SBRK_UNIT to
 | |
|         avoid surprises about sbrk alignment conventions.
 | |
|       * Add mallinfo, mallopt. Thanks to Raymond Nijssen
 | |
|         (raymond@es.ele.tue.nl) for the suggestion.
 | |
|       * Add `pad' argument to malloc_trim and top_pad mallopt parameter.
 | |
|       * More precautions for cases where other routines call sbrk,
 | |
|         courtesy of Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
 | |
|       * Added macros etc., allowing use in linux libc from
 | |
|         H.J. Lu (hjl@gnu.ai.mit.edu)
 | |
|       * Inverted this history list
 | |
| 
 | |
|     V2.6.1 Sat Dec  2 14:10:57 1995  Doug Lea  (dl at gee)
 | |
|       * Re-tuned and fixed to behave more nicely with V2.6.0 changes.
 | |
|       * Removed all preallocation code since under current scheme
 | |
|         the work required to undo bad preallocations exceeds
 | |
|         the work saved in good cases for most test programs.
 | |
|       * No longer use return list or unconsolidated bins since
 | |
|         no scheme using them consistently outperforms those that don't
 | |
|         given above changes.
 | |
|       * Use best fit for very large chunks to prevent some worst-cases.
 | |
|       * Added some support for debugging
 | |
| 
 | |
|     V2.6.0 Sat Nov  4 07:05:23 1995  Doug Lea  (dl at gee)
 | |
|       * Removed footers when chunks are in use. Thanks to
 | |
|         Paul Wilson (wilson@cs.texas.edu) for the suggestion.
 | |
| 
 | |
|     V2.5.4 Wed Nov  1 07:54:51 1995  Doug Lea  (dl at gee)
 | |
|       * Added malloc_trim, with help from Wolfram Gloger
 | |
|         (wmglo@Dent.MED.Uni-Muenchen.DE).
 | |
| 
 | |
|     V2.5.3 Tue Apr 26 10:16:01 1994  Doug Lea  (dl at g)
 | |
| 
 | |
|     V2.5.2 Tue Apr  5 16:20:40 1994  Doug Lea  (dl at g)
 | |
|       * realloc: try to expand in both directions
 | |
|       * malloc: swap order of clean-bin strategy;
 | |
|       * realloc: only conditionally expand backwards
 | |
|       * Try not to scavenge used bins
 | |
|       * Use bin counts as a guide to preallocation
 | |
|       * Occasionally bin return list chunks in first scan
 | |
|       * Add a few optimizations from colin@nyx10.cs.du.edu
 | |
| 
 | |
|     V2.5.1 Sat Aug 14 15:40:43 1993  Doug Lea  (dl at g)
 | |
|       * faster bin computation & slightly different binning
 | |
|       * merged all consolidations to one part of malloc proper
 | |
|          (eliminating old malloc_find_space & malloc_clean_bin)
 | |
|       * Scan 2 returns chunks (not just 1)
 | |
|       * Propagate failure in realloc if malloc returns 0
 | |
|       * Add stuff to allow compilation on non-ANSI compilers
 | |
|           from kpv@research.att.com
 | |
| 
 | |
|     V2.5 Sat Aug  7 07:41:59 1993  Doug Lea  (dl at g.oswego.edu)
 | |
|       * removed potential for odd address access in prev_chunk
 | |
|       * removed dependency on getpagesize.h
 | |
|       * misc cosmetics and a bit more internal documentation
 | |
|       * anticosmetics: mangled names in macros to evade debugger strangeness
 | |
|       * tested on sparc, hp-700, dec-mips, rs6000
 | |
|           with gcc & native cc (hp, dec only) allowing
 | |
|           Detlefs & Zorn comparison study (in SIGPLAN Notices.)
 | |
| 
 | |
|     Trial version Fri Aug 28 13:14:29 1992  Doug Lea  (dl at g.oswego.edu)
 | |
|       * Based loosely on libg++-1.2X malloc. (It retains some of the overall
 | |
|          structure of old version,  but most details differ.)
 | |
| 
 | |
| */
 |