Thu 17 Oct 23:42:52 CEST 2024
This commit is contained in:
		
							parent
							
								
									de3a043ae0
								
							
						
					
					
						commit
						911a1f057e
					
				
							
								
								
									
										615
									
								
								include/library/malloc.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										615
									
								
								include/library/malloc.h
									
									
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,615 @@ | |||
| /*
 | ||||
|   Default header file for malloc-2.8.x, written by Doug Lea | ||||
|   and released to the public domain, as explained at | ||||
|   http://creativecommons.org/publicdomain/zero/1.0/ 
 | ||||
|   | ||||
|   This header is for ANSI C/C++ only.  You can set any of | ||||
|   the following #defines before including: | ||||
| 
 | ||||
|   * If USE_DL_PREFIX is defined, it is assumed that malloc.c  | ||||
|     was also compiled with this option, so all routines | ||||
|     have names starting with "dl". | ||||
| 
 | ||||
|   * If HAVE_USR_INCLUDE_MALLOC_H is defined, it is assumed that this | ||||
|     file will be #included AFTER <malloc.h>. This is needed only if | ||||
|     your system defines a struct mallinfo that is incompatible with the | ||||
|     standard one declared here.  Otherwise, you can include this file | ||||
|     INSTEAD of your system system <malloc.h>.  At least on ANSI, all | ||||
|     declarations should be compatible with system versions | ||||
| 
 | ||||
|   * If MSPACES is defined, declarations for mspace versions are included. | ||||
| */ | ||||
| 
 | ||||
| #ifndef MALLOC_280_H | ||||
| #define MALLOC_280_H | ||||
| 
 | ||||
| #ifdef __cplusplus | ||||
| extern "C" { | ||||
| #endif | ||||
| 
 | ||||
| #include <stddef.h>		/* for size_t */ | ||||
| 
 | ||||
| #ifndef ONLY_MSPACES | ||||
| #define ONLY_MSPACES 0		/* define to a value */ | ||||
| #elif ONLY_MSPACES != 0 | ||||
| #define ONLY_MSPACES 1 | ||||
| #endif				/* ONLY_MSPACES */ | ||||
| #ifndef NO_MALLINFO | ||||
| #define NO_MALLINFO 0 | ||||
| #endif				/* NO_MALLINFO */ | ||||
| 
 | ||||
| #ifndef MSPACES | ||||
| #if ONLY_MSPACES | ||||
| #define MSPACES 1 | ||||
| #else				/* ONLY_MSPACES */ | ||||
| #define MSPACES 0 | ||||
| #endif				/* ONLY_MSPACES */ | ||||
| #endif				/* MSPACES */ | ||||
| 
 | ||||
| #if !ONLY_MSPACES | ||||
| 
 | ||||
| #ifndef USE_DL_PREFIX | ||||
| #define dlcalloc               calloc | ||||
| #define dlfree                 free | ||||
| #define dlmalloc               malloc | ||||
| #define dlmemalign             memalign | ||||
| #define dlposix_memalign       posix_memalign | ||||
| #define dlrealloc              realloc | ||||
| #define dlvalloc               valloc | ||||
| #define dlpvalloc              pvalloc | ||||
| #define dlmallinfo             mallinfo | ||||
| #define dlmallopt              mallopt | ||||
| #define dlmalloc_trim          malloc_trim | ||||
| #define dlmalloc_stats         malloc_stats | ||||
| #define dlmalloc_usable_size   malloc_usable_size | ||||
| #define dlmalloc_footprint     malloc_footprint | ||||
| #define dlmalloc_max_footprint malloc_max_footprint | ||||
| #define dlmalloc_footprint_limit malloc_footprint_limit | ||||
| #define dlmalloc_set_footprint_limit malloc_set_footprint_limit | ||||
| #define dlmalloc_inspect_all   malloc_inspect_all | ||||
| #define dlindependent_calloc   independent_calloc | ||||
| #define dlindependent_comalloc independent_comalloc | ||||
| #define dlbulk_free            bulk_free | ||||
| #endif				/* USE_DL_PREFIX */ | ||||
| 
 | ||||
| #if !NO_MALLINFO | ||||
| #ifndef HAVE_USR_INCLUDE_MALLOC_H | ||||
| #ifndef _MALLOC_H | ||||
| #ifndef MALLINFO_FIELD_TYPE | ||||
| #define MALLINFO_FIELD_TYPE size_t | ||||
| #endif				/* MALLINFO_FIELD_TYPE */ | ||||
| #ifndef STRUCT_MALLINFO_DECLARED | ||||
| #define STRUCT_MALLINFO_DECLARED 1 | ||||
| 	struct mallinfo { | ||||
| 		MALLINFO_FIELD_TYPE arena;	/* non-mmapped space allocated from system */ | ||||
| 		MALLINFO_FIELD_TYPE ordblks;	/* number of free chunks */ | ||||
| 		MALLINFO_FIELD_TYPE smblks;	/* always 0 */ | ||||
| 		MALLINFO_FIELD_TYPE hblks;	/* always 0 */ | ||||
| 		MALLINFO_FIELD_TYPE hblkhd;	/* space in mmapped regions */ | ||||
| 		MALLINFO_FIELD_TYPE usmblks;	/* maximum total allocated space */ | ||||
| 		MALLINFO_FIELD_TYPE fsmblks;	/* always 0 */ | ||||
| 		MALLINFO_FIELD_TYPE uordblks;	/* total allocated space */ | ||||
| 		MALLINFO_FIELD_TYPE fordblks;	/* total free space */ | ||||
| 		MALLINFO_FIELD_TYPE keepcost;	/* releasable (via malloc_trim) space */ | ||||
| 	}; | ||||
| #endif				/* STRUCT_MALLINFO_DECLARED */ | ||||
| #endif				/* _MALLOC_H */ | ||||
| #endif				/* HAVE_USR_INCLUDE_MALLOC_H */ | ||||
| #endif				/* !NO_MALLINFO */ | ||||
| 
 | ||||
| /*
 | ||||
|   malloc(size_t n) | ||||
|   Returns a pointer to a newly allocated chunk of at least n bytes, or | ||||
|   null if no space is available, in which case errno is set to ENOMEM | ||||
|   on ANSI C systems. | ||||
| 
 | ||||
|   If n is zero, malloc returns a minimum-sized chunk. (The minimum | ||||
|   size is 16 bytes on most 32bit systems, and 32 bytes on 64bit | ||||
|   systems.)  Note that size_t is an unsigned type, so calls with | ||||
|   arguments that would be negative if signed are interpreted as | ||||
|   requests for huge amounts of space, which will often fail. The | ||||
|   maximum supported value of n differs across systems, but is in all | ||||
|   cases less than the maximum representable value of a size_t. | ||||
| */ | ||||
| 	void *dlmalloc(size_t); | ||||
| 
 | ||||
| /*
 | ||||
|   free(void* p) | ||||
|   Releases the chunk of memory pointed to by p, that had been previously | ||||
|   allocated using malloc or a related routine such as realloc. | ||||
|   It has no effect if p is null. If p was not malloced or already | ||||
|   freed, free(p) will by default cuase the current program to abort. | ||||
| */ | ||||
| 	void dlfree(void *); | ||||
| 
 | ||||
| /*
 | ||||
|   calloc(size_t n_elements, size_t element_size); | ||||
|   Returns a pointer to n_elements * element_size bytes, with all locations | ||||
|   set to zero. | ||||
| */ | ||||
| 	void *dlcalloc(size_t, size_t); | ||||
| 
 | ||||
| /*
 | ||||
|   realloc(void* p, size_t n) | ||||
|   Returns a pointer to a chunk of size n that contains the same data | ||||
|   as does chunk p up to the minimum of (n, p's size) bytes, or null | ||||
|   if no space is available. | ||||
| 
 | ||||
|   The returned pointer may or may not be the same as p. The algorithm | ||||
|   prefers extending p in most cases when possible, otherwise it | ||||
|   employs the equivalent of a malloc-copy-free sequence. | ||||
| 
 | ||||
|   If p is null, realloc is equivalent to malloc. | ||||
| 
 | ||||
|   If space is not available, realloc returns null, errno is set (if on | ||||
|   ANSI) and p is NOT freed. | ||||
| 
 | ||||
|   if n is for fewer bytes than already held by p, the newly unused | ||||
|   space is lopped off and freed if possible.  realloc with a size | ||||
|   argument of zero (re)allocates a minimum-sized chunk. | ||||
| 
 | ||||
|   The old unix realloc convention of allowing the last-free'd chunk | ||||
|   to be used as an argument to realloc is not supported. | ||||
| */ | ||||
| 	void *dlrealloc(void *, size_t); | ||||
| 
 | ||||
| /*
 | ||||
|   realloc_in_place(void* p, size_t n) | ||||
|   Resizes the space allocated for p to size n, only if this can be | ||||
|   done without moving p (i.e., only if there is adjacent space | ||||
|   available if n is greater than p's current allocated size, or n is | ||||
|   less than or equal to p's size). This may be used instead of plain | ||||
|   realloc if an alternative allocation strategy is needed upon failure | ||||
|   to expand space; for example, reallocation of a buffer that must be | ||||
|   memory-aligned or cleared. You can use realloc_in_place to trigger | ||||
|   these alternatives only when needed. | ||||
| 
 | ||||
|   Returns p if successful; otherwise null. | ||||
| */ | ||||
| 	void *dlrealloc_in_place(void *, size_t); | ||||
| 
 | ||||
| /*
 | ||||
|   memalign(size_t alignment, size_t n); | ||||
|   Returns a pointer to a newly allocated chunk of n bytes, aligned | ||||
|   in accord with the alignment argument. | ||||
| 
 | ||||
|   The alignment argument should be a power of two. If the argument is | ||||
|   not a power of two, the nearest greater power is used. | ||||
|   8-byte alignment is guaranteed by normal malloc calls, so don't | ||||
|   bother calling memalign with an argument of 8 or less. | ||||
| 
 | ||||
|   Overreliance on memalign is a sure way to fragment space. | ||||
| */ | ||||
| 	void *dlmemalign(size_t, size_t); | ||||
| 
 | ||||
| /*
 | ||||
|   int posix_memalign(void** pp, size_t alignment, size_t n); | ||||
|   Allocates a chunk of n bytes, aligned in accord with the alignment | ||||
|   argument. Differs from memalign only in that it (1) assigns the | ||||
|   allocated memory to *pp rather than returning it, (2) fails and | ||||
|   returns KERROR_INVALID_REQUEST if the alignment is not a power of two (3) fails and | ||||
|   returns ENOMEM if memory cannot be allocated. | ||||
| */ | ||||
| 	int dlposix_memalign(void **, size_t, size_t); | ||||
| 
 | ||||
| /*
 | ||||
|   valloc(size_t n); | ||||
|   Equivalent to memalign(pagesize, n), where pagesize is the page | ||||
|   size of the system. If the pagesize is unknown, 4096 is used. | ||||
| */ | ||||
| 	void *dlvalloc(size_t); | ||||
| 
 | ||||
| /*
 | ||||
|   mallopt(int parameter_number, int parameter_value) | ||||
|   Sets tunable parameters The format is to provide a | ||||
|   (parameter-number, parameter-value) pair.  mallopt then sets the | ||||
|   corresponding parameter to the argument value if it can (i.e., so | ||||
|   long as the value is meaningful), and returns 1 if successful else | ||||
|   0.  SVID/XPG/ANSI defines four standard param numbers for mallopt, | ||||
|   normally defined in malloc.h.  None of these are use in this malloc, | ||||
|   so setting them has no effect. But this malloc also supports other | ||||
|   options in mallopt: | ||||
| 
 | ||||
|   Symbol            param #  default    allowed param values | ||||
|   M_TRIM_THRESHOLD     -1   2*1024*1024   any   (-1U disables trimming) | ||||
|   M_GRANULARITY        -2     page size   any power of 2 >= page size | ||||
|   M_MMAP_THRESHOLD     -3      256*1024   any   (or 0 if no MMAP support) | ||||
| */ | ||||
| 	int dlmallopt(int, int); | ||||
| 
 | ||||
| #define M_TRIM_THRESHOLD     (-1) | ||||
| #define M_GRANULARITY        (-2) | ||||
| #define M_MMAP_THRESHOLD     (-3) | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|   malloc_footprint(); | ||||
|   Returns the number of bytes obtained from the system.  The total | ||||
|   number of bytes allocated by malloc, realloc etc., is less than this | ||||
|   value. Unlike mallinfo, this function returns only a precomputed | ||||
|   result, so can be called frequently to monitor memory consumption. | ||||
|   Even if locks are otherwise defined, this function does not use them, | ||||
|   so results might not be up to date. | ||||
| */ | ||||
| 	size_t dlmalloc_footprint(void); | ||||
| 
 | ||||
| /*
 | ||||
|   malloc_max_footprint(); | ||||
|   Returns the maximum number of bytes obtained from the system. This | ||||
|   value will be greater than current footprint if deallocated space | ||||
|   has been reclaimed by the system. The peak number of bytes allocated | ||||
|   by malloc, realloc etc., is less than this value. Unlike mallinfo, | ||||
|   this function returns only a precomputed result, so can be called | ||||
|   frequently to monitor memory consumption.  Even if locks are | ||||
|   otherwise defined, this function does not use them, so results might | ||||
|   not be up to date. | ||||
| */ | ||||
| 	size_t dlmalloc_max_footprint(void); | ||||
| 
 | ||||
| /*
 | ||||
|   malloc_footprint_limit(); | ||||
|   Returns the number of bytes that the heap is allowed to obtain from | ||||
|   the system, returning the last value returned by | ||||
|   malloc_set_footprint_limit, or the maximum size_t value if | ||||
|   never set. The returned value reflects a permission. There is no | ||||
|   guarantee that this number of bytes can actually be obtained from | ||||
|   the system.   | ||||
| */ | ||||
| 	size_t dlmalloc_footprint_limit(void); | ||||
| 
 | ||||
| /*
 | ||||
|   malloc_set_footprint_limit(); | ||||
|   Sets the maximum number of bytes to obtain from the system, causing | ||||
|   failure returns from malloc and related functions upon attempts to | ||||
|   exceed this value. The argument value may be subject to page | ||||
|   rounding to an enforceable limit; this actual value is returned. | ||||
|   Using an argument of the maximum possible size_t effectively | ||||
|   disables checks. If the argument is less than or equal to the | ||||
|   current malloc_footprint, then all future allocations that require | ||||
|   additional system memory will fail. However, invocation cannot | ||||
|   retroactively deallocate existing used memory. | ||||
| */ | ||||
| 	size_t dlmalloc_set_footprint_limit(size_t bytes); | ||||
| 
 | ||||
| /*
 | ||||
|   malloc_inspect_all(void(*handler)(void *start, | ||||
|                                     void *end, | ||||
|                                     size_t used_bytes, | ||||
|                                     void* callback_arg), | ||||
|                       void* arg); | ||||
|   Traverses the heap and calls the given handler for each managed | ||||
|   region, skipping all bytes that are (or may be) used for bookkeeping | ||||
|   purposes.  Traversal does not include include chunks that have been | ||||
|   directly memory mapped. Each reported region begins at the start | ||||
|   address, and continues up to but not including the end address.  The | ||||
|   first used_bytes of the region contain allocated data. If | ||||
|   used_bytes is zero, the region is unallocated. The handler is | ||||
|   invoked with the given callback argument. If locks are defined, they | ||||
|   are held during the entire traversal. It is a bad idea to invoke | ||||
|   other malloc functions from within the handler. | ||||
| 
 | ||||
|   For example, to count the number of in-use chunks with size greater | ||||
|   than 1000, you could write: | ||||
|   static int count = 0; | ||||
|   void count_chunks(void* start, void* end, size_t used, void* arg) { | ||||
|     if (used >= 1000) ++count; | ||||
|   } | ||||
|   then: | ||||
|     malloc_inspect_all(count_chunks, NULL); | ||||
| 
 | ||||
|   malloc_inspect_all is compiled only if MALLOC_INSPECT_ALL is defined. | ||||
| */ | ||||
| 	void dlmalloc_inspect_all(void (*handler) (void *, void *, size_t, void *), void *arg); | ||||
| 
 | ||||
| #if !NO_MALLINFO | ||||
| /*
 | ||||
|   mallinfo() | ||||
|   Returns (by copy) a struct containing various summary statistics: | ||||
| 
 | ||||
|   arena:     current total non-mmapped bytes allocated from system | ||||
|   ordblks:   the number of free chunks | ||||
|   smblks:    always zero. | ||||
|   hblks:     current number of mmapped regions | ||||
|   hblkhd:    total bytes held in mmapped regions | ||||
|   usmblks:   the maximum total allocated space. This will be greater | ||||
|                 than current total if trimming has occurred. | ||||
|   fsmblks:   always zero | ||||
|   uordblks:  current total allocated space (normal or mmapped) | ||||
|   fordblks:  total free space | ||||
|   keepcost:  the maximum number of bytes that could ideally be released | ||||
|                back to system via malloc_trim. ("ideally" means that | ||||
|                it ignores page restrictions etc.) | ||||
| 
 | ||||
|   Because these fields are ints, but internal bookkeeping may | ||||
|   be kept as longs, the reported values may wrap around zero and | ||||
|   thus be inaccurate. | ||||
| */ | ||||
| 
 | ||||
| 	struct mallinfo dlmallinfo(void); | ||||
| #endif				/* NO_MALLINFO */ | ||||
| 
 | ||||
| /*
 | ||||
|   independent_calloc(size_t n_elements, size_t element_size, void* chunks[]); | ||||
| 
 | ||||
|   independent_calloc is similar to calloc, but instead of returning a | ||||
|   single cleared space, it returns an array of pointers to n_elements | ||||
|   independent elements that can hold contents of size elem_size, each | ||||
|   of which starts out cleared, and can be independently freed, | ||||
|   realloc'ed etc. The elements are guaranteed to be adjacently | ||||
|   allocated (this is not guaranteed to occur with multiple callocs or | ||||
|   mallocs), which may also improve cache locality in some | ||||
|   applications. | ||||
| 
 | ||||
|   The "chunks" argument is optional (i.e., may be null, which is | ||||
|   probably the most typical usage). If it is null, the returned array | ||||
|   is itself dynamically allocated and should also be freed when it is | ||||
|   no longer needed. Otherwise, the chunks array must be of at least | ||||
|   n_elements in length. It is filled in with the pointers to the | ||||
|   chunks. | ||||
| 
 | ||||
|   In either case, independent_calloc returns this pointer array, or | ||||
|   null if the allocation failed.  If n_elements is zero and "chunks" | ||||
|   is null, it returns a chunk representing an array with zero elements | ||||
|   (which should be freed if not wanted). | ||||
| 
 | ||||
|   Each element must be freed when it is no longer needed. This can be | ||||
|   done all at once using bulk_free. | ||||
| 
 | ||||
|   independent_calloc simplifies and speeds up implementations of many | ||||
|   kinds of pools.  It may also be useful when constructing large data | ||||
|   structures that initially have a fixed number of fixed-sized nodes, | ||||
|   but the number is not known at compile time, and some of the nodes | ||||
|   may later need to be freed. For example: | ||||
| 
 | ||||
|   struct Node { int item; struct Node* next; }; | ||||
| 
 | ||||
|   struct Node* build_list() { | ||||
|     struct Node** pool; | ||||
|     int n = read_number_of_nodes_needed(); | ||||
|     if (n <= 0) return 0; | ||||
|     pool = (struct Node**)(independent_calloc(n, sizeof(struct Node), 0); | ||||
|     if (pool == 0) die(); | ||||
|     // organize into a linked list...
 | ||||
|     struct Node* first = pool[0]; | ||||
|     for (i = 0; i < n-1; ++i) | ||||
|       pool[i]->next = pool[i+1]; | ||||
|     free(pool);     // Can now free the array (or not, if it is needed later)
 | ||||
|     return first; | ||||
|   } | ||||
| */ | ||||
| 	void **dlindependent_calloc(size_t, size_t, void **); | ||||
| 
 | ||||
| /*
 | ||||
|   independent_comalloc(size_t n_elements, size_t sizes[], void* chunks[]); | ||||
| 
 | ||||
|   independent_comalloc allocates, all at once, a set of n_elements | ||||
|   chunks with sizes indicated in the "sizes" array.    It returns | ||||
|   an array of pointers to these elements, each of which can be | ||||
|   independently freed, realloc'ed etc. The elements are guaranteed to | ||||
|   be adjacently allocated (this is not guaranteed to occur with | ||||
|   multiple callocs or mallocs), which may also improve cache locality | ||||
|   in some applications. | ||||
| 
 | ||||
|   The "chunks" argument is optional (i.e., may be null). If it is null | ||||
|   the returned array is itself dynamically allocated and should also | ||||
|   be freed when it is no longer needed. Otherwise, the chunks array | ||||
|   must be of at least n_elements in length. It is filled in with the | ||||
|   pointers to the chunks. | ||||
| 
 | ||||
|   In either case, independent_comalloc returns this pointer array, or | ||||
|   null if the allocation failed.  If n_elements is zero and chunks is | ||||
|   null, it returns a chunk representing an array with zero elements | ||||
|   (which should be freed if not wanted). | ||||
| 
 | ||||
|   Each element must be freed when it is no longer needed. This can be | ||||
|   done all at once using bulk_free. | ||||
| 
 | ||||
|   independent_comallac differs from independent_calloc in that each | ||||
|   element may have a different size, and also that it does not | ||||
|   automatically clear elements. | ||||
| 
 | ||||
|   independent_comalloc can be used to speed up allocation in cases | ||||
|   where several structs or objects must always be allocated at the | ||||
|   same time.  For example: | ||||
| 
 | ||||
|   struct Head { ... } | ||||
|   struct Foot { ... } | ||||
| 
 | ||||
|   void send_message(char* msg) { | ||||
|     int msglen = strlen(msg); | ||||
|     size_t sizes[3] = { sizeof(struct Head), msglen, sizeof(struct Foot) }; | ||||
|     void* chunks[3]; | ||||
|     if (independent_comalloc(3, sizes, chunks) == 0) | ||||
|       die(); | ||||
|     struct Head* head = (struct Head*)(chunks[0]); | ||||
|     char*        body = (char*)(chunks[1]); | ||||
|     struct Foot* foot = (struct Foot*)(chunks[2]); | ||||
|     // ...
 | ||||
|   } | ||||
| 
 | ||||
|   In general though, independent_comalloc is worth using only for | ||||
|   larger values of n_elements. For small values, you probably won't | ||||
|   detect enough difference from series of malloc calls to bother. | ||||
| 
 | ||||
|   Overuse of independent_comalloc can increase overall memory usage, | ||||
|   since it cannot reuse existing noncontiguous small chunks that | ||||
|   might be available for some of the elements. | ||||
| */ | ||||
| 	void **dlindependent_comalloc(size_t, size_t *, void **); | ||||
| 
 | ||||
| /*
 | ||||
|   bulk_free(void* array[], size_t n_elements) | ||||
|   Frees and clears (sets to null) each non-null pointer in the given | ||||
|   array.  This is likely to be faster than freeing them one-by-one. | ||||
|   If footers are used, pointers that have been allocated in different | ||||
|   mspaces are not freed or cleared, and the count of all such pointers | ||||
|   is returned.  For large arrays of pointers with poor locality, it | ||||
|   may be worthwhile to sort this array before calling bulk_free. | ||||
| */ | ||||
| 	size_t dlbulk_free(void **, size_t n_elements); | ||||
| 
 | ||||
| /*
 | ||||
|   pvalloc(size_t n); | ||||
|   Equivalent to valloc(minimum-page-that-holds(n)), that is, | ||||
|   round up n to nearest pagesize. | ||||
|  */ | ||||
| 	void *dlpvalloc(size_t); | ||||
| 
 | ||||
| /*
 | ||||
|   malloc_trim(size_t pad); | ||||
| 
 | ||||
|   If possible, gives memory back to the system (via negative arguments | ||||
|   to sbrk) if there is unused memory at the `high' end of the malloc | ||||
|   pool or in unused MMAP segments. You can call this after freeing | ||||
|   large blocks of memory to potentially reduce the system-level memory | ||||
|   requirements of a program. However, it cannot guarantee to reduce | ||||
|   memory. Under some allocation patterns, some large free blocks of | ||||
|   memory will be locked between two used chunks, so they cannot be | ||||
|   given back to the system. | ||||
| 
 | ||||
|   The `pad' argument to malloc_trim represents the amount of free | ||||
|   trailing space to leave untrimmed. If this argument is zero, only | ||||
|   the minimum amount of memory to maintain internal data structures | ||||
|   will be left. Non-zero arguments can be supplied to maintain enough | ||||
|   trailing space to service future expected allocations without having | ||||
|   to re-obtain memory from the system. | ||||
| 
 | ||||
|   Malloc_trim returns 1 if it actually released any memory, else 0. | ||||
| */ | ||||
| 	int dlmalloc_trim(size_t); | ||||
| 
 | ||||
| /*
 | ||||
|   malloc_stats(); | ||||
|   Prints on stderr the amount of space obtained from the system (both | ||||
|   via sbrk and mmap), the maximum amount (which may be more than | ||||
|   current if malloc_trim and/or munmap got called), and the current | ||||
|   number of bytes allocated via malloc (or realloc, etc) but not yet | ||||
|   freed. Note that this is the number of bytes allocated, not the | ||||
|   number requested. It will be larger than the number requested | ||||
|   because of alignment and bookkeeping overhead. Because it includes | ||||
|   alignment wastage as being in use, this figure may be greater than | ||||
|   zero even when no user-level chunks are allocated. | ||||
| 
 | ||||
|   The reported current and maximum system memory can be inaccurate if | ||||
|   a program makes other calls to system memory allocation functions | ||||
|   (normally sbrk) outside of malloc. | ||||
| 
 | ||||
|   malloc_stats prints only the most commonly interesting statistics. | ||||
|   More information can be obtained by calling mallinfo. | ||||
|    | ||||
|   malloc_stats is not compiled if NO_MALLOC_STATS is defined. | ||||
| */ | ||||
| 	void dlmalloc_stats(void); | ||||
| 
 | ||||
| #endif				/* !ONLY_MSPACES */ | ||||
| 
 | ||||
| /*
 | ||||
|   malloc_usable_size(void* p); | ||||
| 
 | ||||
|   Returns the number of bytes you can actually use in | ||||
|   an allocated chunk, which may be more than you requested (although | ||||
|   often not) due to alignment and minimum size constraints. | ||||
|   You can use this many bytes without worrying about | ||||
|   overwriting other allocated objects. This is not a particularly great | ||||
|   programming practice. malloc_usable_size can be more useful in | ||||
|   debugging and assertions, for example: | ||||
| 
 | ||||
|   p = malloc(n); | ||||
|   assert(malloc_usable_size(p) >= 256); | ||||
| */ | ||||
| 	size_t dlmalloc_usable_size(const void *); | ||||
| 
 | ||||
| #if MSPACES | ||||
| 
 | ||||
| /*
 | ||||
|   mspace is an opaque type representing an independent | ||||
|   region of space that supports mspace_malloc, etc. | ||||
| */ | ||||
| 	typedef void *mspace; | ||||
| 
 | ||||
| /*
 | ||||
|   create_mspace creates and returns a new independent space with the | ||||
|   given initial capacity, or, if 0, the default granularity size.  It | ||||
|   returns null if there is no system memory available to create the | ||||
|   space.  If argument locked is non-zero, the space uses a separate | ||||
|   lock to control access. The capacity of the space will grow | ||||
|   dynamically as needed to service mspace_malloc requests.  You can | ||||
|   control the sizes of incremental increases of this space by | ||||
|   compiling with a different DEFAULT_GRANULARITY or dynamically | ||||
|   setting with mallopt(M_GRANULARITY, value). | ||||
| */ | ||||
| 	mspace create_mspace(size_t capacity, int locked); | ||||
| 
 | ||||
| /*
 | ||||
|   destroy_mspace destroys the given space, and attempts to return all | ||||
|   of its memory back to the system, returning the total number of | ||||
|   bytes freed. After destruction, the results of access to all memory | ||||
|   used by the space become undefined. | ||||
| */ | ||||
| 	size_t destroy_mspace(mspace msp); | ||||
| 
 | ||||
| /*
 | ||||
|   create_mspace_with_base uses the memory supplied as the initial base | ||||
|   of a new mspace. Part (less than 128*sizeof(size_t) bytes) of this | ||||
|   space is used for bookkeeping, so the capacity must be at least this | ||||
|   large. (Otherwise 0 is returned.) When this initial space is | ||||
|   exhausted, additional memory will be obtained from the system. | ||||
|   Destroying this space will deallocate all additionally allocated | ||||
|   space (if possible) but not the initial base. | ||||
| */ | ||||
| 	mspace create_mspace_with_base(void *base, size_t capacity, int locked); | ||||
| 
 | ||||
| /*
 | ||||
|   mspace_track_large_chunks controls whether requests for large chunks | ||||
|   are allocated in their own untracked mmapped regions, separate from | ||||
|   others in this mspace. By default large chunks are not tracked, | ||||
|   which reduces fragmentation. However, such chunks are not | ||||
|   necessarily released to the system upon destroy_mspace.  Enabling | ||||
|   tracking by setting to true may increase fragmentation, but avoids | ||||
|   leakage when relying on destroy_mspace to release all memory | ||||
|   allocated using this space.  The function returns the previous | ||||
|   setting. | ||||
| */ | ||||
| 	int mspace_track_large_chunks(mspace msp, int enable); | ||||
| 
 | ||||
| #if !NO_MALLINFO | ||||
| /*
 | ||||
|   mspace_mallinfo behaves as mallinfo, but reports properties of | ||||
|   the given space. | ||||
| */ | ||||
| 	struct mallinfo mspace_mallinfo(mspace msp); | ||||
| #endif				/* NO_MALLINFO */ | ||||
| 
 | ||||
| /*
 | ||||
|   An alias for mallopt. | ||||
| */ | ||||
| 	int mspace_mallopt(int, int); | ||||
| 
 | ||||
| /*
 | ||||
|   The following operate identically to their malloc counterparts | ||||
|   but operate only for the given mspace argument | ||||
| */ | ||||
| 	void *mspace_malloc(mspace msp, size_t bytes); | ||||
| 	void mspace_free(mspace msp, void *mem); | ||||
| 	void *mspace_calloc(mspace msp, size_t n_elements, size_t elem_size); | ||||
| 	void *mspace_realloc(mspace msp, void *mem, size_t newsize); | ||||
| 	void *mspace_realloc_in_place(mspace msp, void *mem, size_t newsize); | ||||
| 	void *mspace_memalign(mspace msp, size_t alignment, size_t bytes); | ||||
| 	void **mspace_independent_calloc(mspace msp, size_t n_elements, size_t elem_size, void *chunks[]); | ||||
| 	void **mspace_independent_comalloc(mspace msp, size_t n_elements, size_t sizes[], void *chunks[]); | ||||
| 	size_t mspace_bulk_free(mspace msp, void **, size_t n_elements); | ||||
| 	size_t mspace_usable_size(const void *mem); | ||||
| 	void mspace_malloc_stats(mspace msp); | ||||
| 	int mspace_trim(mspace msp, size_t pad); | ||||
| 	size_t mspace_footprint(mspace msp); | ||||
| 	size_t mspace_max_footprint(mspace msp); | ||||
| 	size_t mspace_footprint_limit(mspace msp); | ||||
| 	size_t mspace_set_footprint_limit(mspace msp, size_t bytes); | ||||
| 	void mspace_inspect_all(mspace msp, void (*handler) (void *, void *, size_t, void *), void *arg); | ||||
| #endif				/* MSPACES */ | ||||
| 
 | ||||
| #ifdef __cplusplus | ||||
| };				/* end of extern "C" */ | ||||
| #endif | ||||
| 
 | ||||
| #endif /* MALLOC_280_H */ | ||||
		Loading…
	
		Reference in New Issue
	
	Block a user