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BASICS
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 Data-driven Methods for
 Structural Health Monitoring
 Damage Diagnostics 
 Material Testing

 Data-driven Methods in
 Measurement - Sensors
 Signal Processing
 Aggregation
 Transformation
 Fusion
 Interpretation (Prediction)
 Generation



BASICS
Accuracy versa Precision

 Strong. Accuracy: Close to expectation value (ground 
truth)

 Weak. Precision: Low variance

Explainability versa Traceability or Tracktability
 Strong. Explainability: An inductive model 

relationship between x and y based on knowledge

 Weak. Traceability: Which input contrbutes to output?

Generalization: Specific or more general?

 Interpolation versa Extrapolation
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We have an opposite relationship between model accuracy and model 
explainability! And what‘s about model generalization?

Hammann, D., & Wouters, M. (2025). Explainability Versus Accuracy of Machine Learning Models: The Role of Task Uncertainty and 
Need for Interaction with the Machine Learning Model. European Accounting Review, 1–34. 
https://doi.org/10.1080/09638180.2025.2463961



BASICS
Interpolation versa Extrapolation: Prediction Errors?

Models

 Trees: I/E NA (partly by regression trees)

 Functions and Functional Graphs (SVM, ANN, CNN, ..)

 Training = Definition from Data ↔ Def. Parameter Space

Interpolation

 Input values between training points but inside parameter space

Extrapolation 

 Input (and output) values outside the parameter space
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Interpolation should be possible with all functional models, extrapolation fails 
commonly! Generalization provides interpolation (degree 1) and extrapolation 
(degree 2). A specialized model will provide neither nor.

y

x

f(x):xy

Interpolationrange
Extrapolation Extrapolation

y=?
y=?

Do we have
learned

anything?



BASICS
Monitoring / Observation

 Interpolation: Test with sample set not included in 
training (classical validation) but same parameters ф

 Extrapolation: Different sample distributions ф for test 
and training data

 Training Data versa Test Data: Accuracy, Precision, ...

Robustness

 What is the output if the input is ouside of the definition 
parameter space or non-sense data?

 Noise sensitivity? 
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Training error low, test error high: Specialized Model ► Nice to have, but useless! 
Training and test error low: Interpolating Model ► Degree 1 of Generalization
Different sample distributions covering different parameter spaces: 
Extrapolation Test, low error outside training distribution ► Degree 2 of Generalization 
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BASICS

Robustness
 What is the output if the input is ouside of the 

definition parameter space or non-sense data?
 Noise sensitivity? Make a y(noise) distribution 

test - high variant y(noise) distribution is bad. 
 Can we detect invalid output caused by 

invalid input?
 Do we need a separate scoring model to 

classify input data validity? Or the 
„noise“ class as additional output?

8

With simple models we can maybe recognize and detect invalid input and invalid output. 
With any complex, highly non-linear, multi-variate and deep (nested) models this is mostly 
impossible! 

y in 
def.
space?
y(x) 
dist.

Model Predict

y

x

f(x):xy

Defintion Parameter Space x/y
x=[0,1],y=[0,1]

No chance to 
detect invalid 
input/output

Output y<0, 
outside definition 
parameter space,

invalid!

x=noise



BASICS
Traceability

 Which part of input is relevant?

 Which functional terms or paths in graphs are 
contributing to output (or decision making)?

Explainibility

 Anything learned? Generalization towards a physical law?

 Analytical explanations x  y?

 Surrogate Modeling

 Explainable Models (e.g. XANN)
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The most important methodology: Explain the model behavior or extraxt knowledge from a 
data-driven model. Induction is better than Deduction. 

Model Predict

Annotate

Model
Predict

Highlight

yx

SurrogateModel
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PREDICTION VERSA GENERATION Motivation: Lack of 
parameter variance 
and sparse paramater 
space coverage of 
experimental data.Signal Data Generation: Output is Signal

 Model-driven or random Augmentation from real 
measured data (linear independent data?), additive and 
multiplicative noise, super-position (real-synthetic)

 Model-based or Model-driven Simulation Methods 
(Physics-drivem but Reality gap!)

 Model-free Random-process Generative Models (data-
driven), e.g. Generative Adversarial Networks or 
Variational Autoencode Models

 Model-free (?) or Model-driven Parameterizable 
Generative Models (data-driven)

The most important quesion of signal data generation: Produces the generator what we 
want - is it physically correct, and is the parameter space broadly covered? 

Augment

Generate

P
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EXAMPLE 1: USELESS DATA-DRIVEN MODEL 
Ultrasonic High-frequncy Pulse-Echo Measurements for Porosity Detection in Die-casted Aluminum Plates 

Pores

Echo
Signal

Input

 Time-resolved US signal (stimuls: bipolar pulse, broad frequency 
spectrum) , 50 specimens, 3 measuring locations

 Transducer: Dual-piezo-crystal, 5 MHz, 10 mm Dia.

 Material: Aluminum alloys (primary, secodary 58/89%)

Features

 Frequency spectrum of response signal (FFT)

 Assumption: Attenuation is frequency dependent and frequency 
spectrum is depending on pores (size, density) 

Output
 Pore grade classification (A,B,C,D)

 Simple ANN (two layers [10,5], sigmoid activation function softmax 
output layer) Model

Train Predict

Predict
Test

Prec.
Acc.
Error
Dist.ф

FFT Down
Sampling

Aluminum
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EXAMPLE 1: USELESS DATA-DRIVEN MODEL 
Ultrasonic High-frequncy Pulse-Echo Measurements for Porosity Detection in Die-casted Aluminum Plates 

Classification
of alloy class is
directly visible!
Strong feature 
correlation

No porosity
class
correlation
visible.
Hidden?
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EXAMPLE 1: USELESS DATA-DRIVEN MODEL 
Ultrasonic High-frequncy Pulse-Echo Measurements for Porosity Detection in Die-casted Aluminum Plates 

Data

 ф: 50 specimen x 3 positions x 5 augmentation (multiplciative normal distrubuted noise 10%), mixed 3 alloys

 Training/Test split: 80/20% (random)

Results

 Training of ANN (adam optimizer) with augmented data: Smooth and convergent!

 Classification error: Training Data=0%..3% (!), Test=40%±0%
Explainibility

 Large Training/Test error ratio: Specialized Model! No I/E

 Very small/weak input features were amplified resulting 
in a practical unusable, unpredictable and instable model

 Unknown functional x-y relation

Model
f(x,)

Train Predict

PredictTest

Poro-
sity
Class

фFFT
Down

Sampling

Interpolation (I)/
Extrapolation (E)
Tests not possible

Random
Aug.

Random 
Random data split, 
augmentation, and 
model training was 
repeared N times 

(Statistiscs)
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EXAMPLE 2: GENERATIVE MODEL 
Random-process and Data-driven Generative Model for Guided Ultrasonic Wave Data

Signals

 Time-resolved US signal (stimuls: gaussian-masked sind pulse, narrow 
frequency spectrum)

 Assumed measuring set-up: On sender transduce, one receiver 
transducer, single and straight path

 Material: Solid (e.g., Aluminum), Damage: Air, e.g. a circular hole

Simulation and Ground-truth (GT) Data

 Parameter space is limited - simulation using visco-elastic wave equiation 
is used

 A large set of data can be generated with exact labelling (GT)

Generative Model

 Generative Adversarial Network (GAN)

 Input: Random vector, Output: GUW signal, Training: GUW signals from 
simulation

y

x

Sender

Receiver

Damage

ф={fwave,dim.,posdam,sizedam,T,..}

Al Plate
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EXAMPLE 2: GENERATIVE MODEL 
Random-process and Data-driven Generative Model for Guided Ultrasonic Wave Data

Generative Adversarial Network Model

 Generator

 Discriminator (only Training)

 The generator nevers sees the orginal data!

 Feedback only from discriminator which 
predicts a fake score [0,1]

Update

Update

[0,1]

How can we evaluate the signal 
generator quality?
Physical correctness? Covered 
Generator parameter space?

ф

ф?



EXAMPLE 2: PARAMETER PREDICTOR MODEL 
Random-process and Data-driven Generative Model for Guided Ultrasonic Wave Data

Parameter Predictor Model

 Input: GUW signal (real/simu./synth.)

 Output: Parameter vector

 Here: Damage position pdam=(x,y), 
trained with simulation data (GT)

 Interpolation and Extrapolation required

Use another data-driven predictor 
model for the data parameter space!
Good idea? How good is the predictor?
Can we trust the model?

ModelFeature
Selector

x
yPredict

ф

?
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EXAMPLE 2: PARAMETER PREDICTOR MODEL 
Random-process and Data-driven Generative Model for Guided Ultrasonic Wave Data

Parameter Predictor Model: IE Test

 Two sample sets (ф is damage 
location): Normal (N) and uniform (U) 
random distribution of damage location 
(x,y) 

 Training with normal distributed data 
(80%), Test with uniform distributed data 
(100%)

It seems the model is I and partly E 
capable, at least we can hope! 

ModelFeature
Selector

x
yPredict

ф
y

x
Regr. Error Training Data (N)  Test Data (N)            Test Data (U) 

17[Sidar Kilinc, 2025]



EXAMPLE 2: PARAMETER PREDICTOR MODEL 
Random-process and Data-driven Generative Model for Guided Ultrasonic Wave Data

Parameter Predictor Model: IO Analysis

 Identify major input elements / regions 
contributing to the  output (strong 
feature analysis), Input: signal s, Output: 
location coordinates (x,y)

 Gradient is a measure of activation:
��
���

≈ ��
���

, ��
���

≈ ��
���

If the prediction / regression error is 
low then stimulus signal regions can 
be identified. If the error is high, no 
clear correlation is visible! 

ModelFeature
Selector

x
yPredict

ф

Ground Truth x=352 y=307

Predicted x=226 (-25%) y=308 (0.3%)

(CNN Model)

Signal Gradients
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EXAMPLE 2: SCORER MODEL 
Random-process and Data-driven Generative Model for Guided Ultrasonic Wave Data

Parameter Predictor Model: Noise Test

 Invalid and noise data test: Feed model 
with pure random noise and random 
sine waves.

 Train an additional scorer model that 
tests the input signal data for validity.

What happens if the predictor gets 
noise or random data? Make a test...
The predictor model outputs a broad 
parameter range..  

Pred.
Model

Feature
Selector

x
yPredict

ф

Random Sine Waves
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Output x
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EXAMPLE 2: SCORER MODEL 
Random-process and Data-driven Generative Model for Guided Ultrasonic Wave Data

Parameter Predictor Model: Noise Test

 Invalid and noise data test: Feed model 
with pure random noise and random 
sine waves.

 Train an additional scorer model that 
tests the input signal data for validity.

 Hierarchical model: 1. Scorer 2. 
Predictor  

What happens if the predictor gets 
noise or random data? Make a test...
The predictor model outputs a broad 
parameter range. A scorer is required.  

Pred.
Model

Feature
Selector

x
yPredict

ф

Scorer
Model

Feature
Selector

Valid?
[0,1]Predict

Random Sine WavesNoise GUW

0.3 /0.5 (+ GUW)0 1.0
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CONCLUSIONS

Generalization

 Degree 1: Model can be used for 
Interpolation w/o large deviations 
within defined parameter Space

 Degree 2: Model can be used 
outside (trained) parameter space 
w/o large deviation

 Degree 3: The model is stable 
against noise and invalid data

 If we want to test and evaluate 
generative models (random 
process) we need degree 3!

Traceability

 Effect of input on model activation 
(paths inside a model) / Activation 
paths

 Which part or region of model input 
is relevant for a specific output?

 Model behavior with invalid or pure 
noise data, model selection

Explainability

 Do we have learned something from 
the data-driven model? Induction 
versa deduction?

 Why is the model giving a specific 
output for a specific input?

 Surrogate models can help to reduce a 
complex model to simplified and 
explainable well known functional laws

 Can we solve the inverse problem with 
a specific model?

 Can we explain generative models?
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