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Transducer (Sender)

INTRODUCTION: NON-DESTRUCTIVE TESTING USING GUW

= Detection of hidden damages, defects, and impurities (e.g., pores, cracks, delaminations) is still
a challenge using GUW!

=  Example Impact Damage in multi-layer materials and laminates: Combination of different damages, i.e.,
cracks, delaminiation, change of material and layer thickness, damages in different layers, and so on.

= Time-resolved GUW signals are a superposition of different wave-damage interactions! Damage
features are hard to be isolated from the base-line signal.

= Data-driven Modeling of damage predictor models depends strongly on measured training data.

Primary Goal. Automated Damage, Defect, and Impurity Detection in Materials and
Structures including Composites using Data-driven Damage Predictor Models and GUW

Signals.
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INTRODUCTION: DATA =

Physical
Simulation
—

———

Experiments

= Data-driven Modeling of damage predictor models depends strongly on training data i

= But Data Space is sparse with respect to:
= Geometrical Properties
= Environmental Properties
m  Sensors, Transducers, Pitch Signal Properties

=  Damage Properties

Secondary Goal. Synthetic Data Generation constrained and controlled by Real Data from
Experiments, Training of ML Models using Synthetic Data only.
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But experimental data space is sparse: eyl o Training Data
= Only few transducers and positions Moll et al.. 2019

Y

Only few measuring paths
Only few or no variation of environmental parameters (temperature, humidity, tense and so on)
Only few damage cases (position, strength, size and so on) // 1 Impact Damage : 1 Specimen!

Limited reproducibility (drift, changes of specimens, environmental parameters, sensors... over time)

Secondary Goal. Synthetic Data Generation constrained and controlled by Real Data from
Experiments, Training of ML Models using Synthetic Data only.
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= But analytical data space is sparse: Training Data

= Oversimplification of Physical and Material Models, commonly only macroscopic aggregates

= 3-dim damage-wave interaction is hard to be modeled, especially in multi-material and multi-layer structures
= Environmental parameters can be considered partially

= Variation requires Monte Carlo simulation techniques

= Boundary reflections are commonly not considered

Secondary Goal. Synthetic Data Generation constrained and controlled by Real Data from
Experiments and Physical Models, Training of ML Models using Synthetic Data only.

Universitat
Bremen 7



P
_J

el SamNOT w242 Sestum - 8
e
o | 3 P 'EBshmes U

ey
i b = Analytical
Y. i [ - Models

P —
Physical

Simulation

—

INTRODUCTION: DATA

—

Experiments

. . . . s
= But simulation data space is sparse: Training Data

= QOversimplification of Physical and Material Models, but visco-elastic finite integration technique is promising
= 3-dim damage-wave interaction is hard to be simulated, especially in multi-material and multi-layer structures
=  Environmental parameters can be considered partially

= Variation requires Monte Carlo simulation techniques, difficult to be handled in a time-discrete simulation

=  Boundary reflections are commonly considered

Secondary Goal. Synthetic Data Generation constrained and controlled by Real Data from
Experiments and Physical Models, Training of ML Models using Synthetic Data only.
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INTRODUCTION:
THE REALITY GAP

= There is always a reality gap
between real measurements and

= Simulation!

=  Analytical Modeling!

40

Air-coupled US Scan 2D Simulation
FML Plate Aluminum Plate

=  Synthetic Data Augmentation using Experimental Data?

m  Synthetic Data Generation using Random Process-driven Generative Models?

Universitat
Bremen

Secondary Goal. Synthetic Data Generation constrained and controlled by Real Data from
Experiments and Physical Models, Closing the Reality Gap.




SIMULATION

Used in this work to create a reference signal base to train and test generative models (ground truth
data)

= The signals should be as simple as possible without complex patterns to enable comparison of
generated and simulated signals (are they real or silly fakes?)

=  Two classes of “simulated” GUW signals:

= Pitch signals generated by ground-truth mathematical function (windowed sine waves)

= Catch signals computed with a 2-dim visco-elastic finite integration method simulator (based on SImNDT)
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SIMULATION: ANALYTICAL SIGNAL MODEL

I=(1,2,..,N)
+ I
S =sin | =2
| | Sin (P ?T)
= Pitch (Sender) Signal
5 L o=kW
= Base signal: Sine wave S (1)
= Mask: Gaussian window function M 7o I — 025
= Generator function: G 0.5N
M = ! E_sz
V2o
G=SM
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SIMULATION: VISCO-ELASTIC WAVE PROPAGATION MODEL

= Based on SIMNDT OpenCL/GPU Solver (2-dim Finite Integration Method)
https://github.com/mmolero/SImMNDT http://git.edu-9.de/sbosse/SIMNDT2

= 1 Sender Transducer, Array of 20 Receiver Transducers, Host: Aluminum, Defect: Hole (Air)
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https://github.com/mmolero/SimNDT

GENERATIVE MODELS

Y

Goal. A parametrizable Generative Model with a random process but constrained by
experimental (or simulated) data (GUW signals).

Input: Model Parameters, e.qg., for a
Pitch Signal Model: P=(p,w,c), i.e., p:period of the sine wave, w: width (number of cycles), c.center

position on time axis
Catch Signal Model: P=(p,w,C,E,D,R,S), i.e., E: environment/temperature, D:damage location, S:

sender position, R: receiver position, M: material parameters?
Output: GUW signal without linear dependency to training data (example) signals!
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GENERATIVE MODELS: SURROGATE FC-CNNT MODEL

= Question 1: Is there is a Parametrizable Generative Model trained with example data capable to represent
the entire parameter space?

= Question 1.1: Is interpolation between points (examples) in the parameter space possible?
= Question 1.2: Is extrapolation beyond convex hull points (examples) in the parameter space possible?

= |nput: Model Parameters
=  Training Data: Pitch signal from analytical model
= Qutput: GUW Signal

= Architecture: 3 Fully Connected Neuronal layers, 3 Transposed Convolutional/Max-Pooling layers, 1
Convolutional and 1 final FC layer

(a) FC-CNNT Generator 4@
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GENERATIVE MODELS: SURROGATE FC-CNNT™ MODEL

= Answer 1: Yes CNNT-GEN2

= Answer 1.1: Yes o0 o ot s o

= Answer 1.2: No A [\ , ,. ‘ —— E

= Physical correctness: Yes E VV f as o £

= Control parameters: Linear P . s e e T Sy SR S e
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GENERATIVE ADVERSARIAL NETWORK (GAN)

=  What is that? Arandom-process driven generative model
= Use caes (typically)? Generation of fancy synthetic data learned from real data

= How does it works? The generator is trained by a discriminator. The discriminator only decides if a sample is real or fake.
The generator is trained to generate fakes (fooling us), not reals.

=  What do they require? Large amount of real data! We don’t have this in measuring sciences...
= Aretheresults physical correct? No control over at all. Answered by this talk?
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GENERATIVE ADVERSARIAL NETWORK (GAN)

= Works that uses GAN for signal generation...
9 g Time-Domain Signal Synthesis

with Style-Based Generative Adversarial
Networks Applied to Guided Waves

ﬂ Sensors (2022) Mo (2021)

Matensz Heesch (&) Krzysztof Mendrok, and Ziemowit Dworakowski

Article
Diagnostic-Quality Guided Wave Signals Synthesized Using _
Generative Adversarial Neural Networks . biology MbPL

Mateusz Heesch 1, Michal Dziendzikowski 2(0, Krzysztof Mendrok 1 and Ziemowit Dworakowski 1'* Article

SynSigGAN: Generative Adversarial Networks
for Synthetic Biomedical Signal Generation

SCIENTIFIC RE Pg}RT S (2020)

OFEN | Electrocardiogram generation Generative Adversarial Network for Radar Signal
with a bidirectional LSTM-CNN .
(2019) generative adversarial network Generation (2020)
Fei Zhu'?, FeiYe', Yuchen Fu®, Quan Liu® & Bairong Shen* Thomas Truong Svetlana Yanushkevich
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GENERATIVE MODELS: RANDOM GAN FC-CNNT MODEL

= Question 2: Can a random-process driven Generative Model trained with example data produce
realistic (“physical correct”) signal data?

= |nput: Random vector
= Training Data: Pitch signal from analytical model
= Qutput: GUW signal

=  Architecture: Generative Adversarial Network (GAN), Two Models, Generator and Discriminator.

Generator consists of transposed Convolution layers, Discriminator is a classical FC-CNN.
(c) FC-CNNT GAN N"
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GENERATIVE MODELS:

Y

Answer 2: No (not
satisfying)
Physical correctness: No

Control parameters: No

The GAN produces
artifacts and
distortions.

The random GAN
model not learned
the analytical model!
Reason: No direct
feedback of
training data to the
generator.
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GENERATIVE MODELS: RANDOM GAN FC-CNNT™ MODEL

=  Comparison of the

Histogram sd{G(p,w,0=30))

histogram distribution of the . |
standard deviation of pitch || Analytical Madel
signals generated o
= (@) the analytical model 4 III I
= (b) the random controlled : )
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@ @

FC-CNNT'-GAN model (a)
trained with the data from i} Hogram s aANrunl) . Histogram sd(CNN(p.w 0=30)
the analytical model . 16
:: FC-CNNT-GAN :‘2‘ FC-CNNT
= (c) the surrogate FC-CNNT w0 0
model . e
= All histograms are in the : III.III III.I__.__ : I
range [0’03] 000 004 007  0A 0.1 022 0.29
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GENERATIVE GUW MODELS: RANDOM GAN FC-CNNT™ MODEL

= Question 3: Can a random-process driven Generative Model trained with example data produce
realistic (“physical correct”) catch signal data?

= |nput: Random vector
= Training Data: GUW signals from 2-dim simulation, different damage and sensor positions
= Qutput: GUW signal vector (200 points)

=  Architecture: Generative Adversarial Network (GAN), Two Models, Generator and Discriminator.

Generator consists of transposed Convolution layers, Discriminator is a classical CNN.
(c) FC-CNNT GAN N"

relu tanh tanh tanh tanh — leakyRelu leakyRelu leakyRelu leakyRelu sigmoid 4‘
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GENERATIVE GUW MODELS: RANDOM GAN FC-CNNT™ MODEL

= Question 3.1: How can we evaluate the GUW catch signals with respect to “physical” correctens?
= Answer 3.1: By using a CNN regression predictor model!
= |nput: GUW signal vector (200 points)

= Qutput: Two Models: 1. Regression of damage location (0/0 means no damage), 2. Sensor position

Transducer (Sender)

¢ O— |9 |

m  Architecture: Classical CNN.

/..-a \ " Damage
»| Generator »| Predictor |2 v T(}i‘;‘ij,'j,‘;?{ OOOOO0O|R
Z \
—>»| Predictor (dX’
s(t) — PM —>
| — dy)
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GENERATIVE GUW MODELS: RANDOM GAN FC-CNNT™ MODEL

= Answer 3: Maybe, but again
with artifacts and some

physical incorrect signals 5
= Question 3.2: What is about |
variance with respect to a
parameter space (damage
and sensor pOSItlonS)’) om0 e @ ow o ow w w0 _:0 20 40 60 80 100 120 140 160 180 200

” ” .
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Index Index
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GENERATIVE GUW MODELS: RANDOM GAN FC-CNNT MODEL

= Answer 3.2: Promising, w Histogram s(SIMNOT) L e (AN
= Distribution of standard ®

deviation of signal is N

comparable to ground truth —> |,
data, but “ I Il II
. N __II .._ o _.ll .I-I_

= X/Y damage position show
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GENERATIVE GUW MODELS: CONTROLLABLE RANDOM GAN
FC-CNN™ MODEL

= Question 4: Can a random-process be constrained by a parameter vector that drives a Generative
Model trained with example data producing realistic (“physical correct”) catch signal data?

= |nput: Random vector, Parameter vector (aka. Style vector)
= Training Data: GUW signals
= Qutput: GUW signal vector

= Architecture: Generative Adversarial Network (GAN), Two Models, Generator and Discriminator.
Generator consists of transposed Convolution layers, Discriminator is a classical CNN.

= There are different sub-architectures to merge the
random Z vector and control vector P/Y Ej

ﬁ P(p, .
()] >i
Z(random)
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GENERATIVE GUW MODELS: CONTROLLABLE RANDOM GAN
FC_CN NT MODEL (a1) AC-FC-CNNT-GAN

FC-CNNT-FC

CNN Y]

= Answer 4:
Maybe /ﬂ
>

Conv2D

x.

*

*
Flatten
FC ANN

= |nput and output
architectures of
ZIY(P) can differ

CITTTTTITI] =
FC ANN |
| Conv2DTrans |
*
*
*
MaxPool
*
*
*
FC ANN |

OO <

(1]

74
[Y] (ag) AC-FC--GAN
Generator @ Discriminator
The style vector is gl_ FC-ANN 1 B 1 Foaw [
= = ] =
commonly z * * % 2 H =1 I 2lm
entangled, i.e., rd e H M P 2
control of individual = = B L L
paremeters (e.g.,
damage location) is S (b) Styled DCGAN
not possible! 0 Generator o Discriminator
515 IRk g R JRE 3
K 8| 18 8 B
(2] By _ = - —
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level

GENERATIVE GUW MODELS: STYLED GAN FC-CNN MODEL

A Style-Based Generator Architecture for Generative Adversarial Networks (c) Styled Adaln GAN
Tero Karras Samuli Laine Timo Aila £ C 111111
(2019) NVIDIA NVIDIA NVIDIA | |
Generator [S]
° —
= P (=) & |
= c

2l % % % |Z = S S| |E|l * * *
O O 2 15817 2| | ]
Q Q < S < 2 -
[Y] |
Wl || c] 5 x W

= Styled GAN architecture introduced by NVIDIA developers
= Adaptive Instance Normalization GAN splitting the generator into a mapping and synthesis network

= The mapping network (multi-layer FC ANN) maps the style vector Z on an intermediate latent vector
w, which is the input for multiple adaptive instance normalization layers controlling the generation

Process.

= The uniform random distributed vector (Gaussian noise) is added partially to the output of multiple
convolutional layers, instead passing the entire random vector to the input of the first convolutional
layer
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CONCLUSIONS

Data

Don’t trust
data-driven
modells!

Results

Single- and Multi-Path
Guides Ultrasonic Wave
Signals

Data and feature variance
Is always limited from
experiments!

Parameter space is sparse

Synthetic Signal Data
from computation based on
experimental data
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Parametrizable Surrogate
Generative Model

Random-process driven
Generative Model

Generative Adversarial Networks

Styled Generative Adversarial
Networks

Convolutional Neural Networks

Transposed Convolutional Neural
Networks

Interpolation within the trained
parameter space is possible

Extrapolation fails

No GAN model provides
signals with physical
correctness (other authors
never tested this)

Styled GANs are promising to
get control over the generation
process, but parameter vector
Is entangled (not independent).
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