
Automated Feature Extraction with

Mascheine Learning and Image

Processing

PD Stefan Bosse

University of Siegen - Dept. Maschinenbau

University of Bremen - Dept. Mathematics and Computer Science

1 / 26

WorkBook, WorkShell, and Dataflow

Graphs

Introduction to Dataflow Graph Architectures using the WorkBook

PD Stefan Bosse - AFEML - Module DFG: WorkBook, WorkShell, and Dataflow Graphs -

2 / 26

Machine learning

Preparation

0. Experiments providing measuring and meta data

1. Input feature selection

2. Data transformation

Functional, reduction

Format, data type

3. Statistical Analysis

4. Data splitting

Training sample partition

Test sample partition

PD Stefan Bosse - AFEML - Module DFG: WorkBook, WorkShell, and Dataflow Graphs - Machine learning

3 / 26

Machine learning

Model Training

5. Selection of model, defining model parameters

Static parameters: model structure

Static parameters: operational parameter (learnign rate, etc.)

6. Iterative training of model

Adaptation of dynamic parameters (functional parameter or

structure)

7. Calculation of the prediction/inference errors:

Training data

Test data

8. Reconfiguration of static model and algorithm parameters, go to 6

PD Stefan Bosse - AFEML - Module DFG: WorkBook, WorkShell, and Dataflow Graphs - Machine learning

4 / 26

Machine learning

Functional and Dataflow Graphs

 The entire data processing architecture can be mapped on a

dataflow graph (DFG)

A DFG consists of functional (stateless) and procedural (state-based)

nodes with:

Input ports (input variables) i

Output ports (output variables) o

Operational ports (state- and event-based methods of a node) op

PD Stefan Bosse - AFEML - Module DFG: WorkBook, WorkShell, and Dataflow Graphs - Machine learning

5 / 26

fn(→i) :

⎧⎪ ⎪ ⎪ ⎪ ⎪
⎨
⎪ ⎪ ⎪ ⎪ ⎪⎩

→i → →o op1

→i → →o op2

. . . .

→i → →o opk

pn(→i, σ) :

⎧⎪ ⎪ ⎪ ⎪ ⎪
⎨
⎪ ⎪ ⎪ ⎪ ⎪⎩

→i × σ → →o × σ op1

→i × σ → →o × σ op2

. . . .

→i × σ → →o × σ opk

DFG(→x) : →x → f1 →f2 →

⎧⎪
⎨
⎪⎩

f3,. .

f4,. .

f5,. .

→ fm →→y

PD Stefan Bosse - AFEML - Module DFG: WorkBook, WorkShell, and Dataflow Graphs - Machine learning

6 / 26

There are sequential and parallel data paths. An output port can

be connected to multiple input ports → Data split. There are join

nodes (demultiplexer or aggregators).

 There is a separation of computation and communication.

Such DFG architectures can be easily parallelized and distributed

(Web) using IP-based communication channels (e.g., using

WebSockets)!

PD Stefan Bosse - AFEML - Module DFG: WorkBook, WorkShell, and Dataflow Graphs - Machine learning

7 / 26

DFG Node Blocks

Fig. 1. Data interface of a functional DFG node with input, output, and operational ports

DFG nodes can be connected:

Output ports are connected with input ports ⇒ Directed data

channels

Output ports can be connected to operation ports ⇒ Directed

data event channels

PD Stefan Bosse - AFEML - Module DFG: WorkBook, WorkShell, and Dataflow Graphs - Machine learning

8 / 26

DFG Node Library

There is a object-oriented class library L that provides class constructor

functions implementing DFG nodes.

Nodes are instantiated from the class constructor with a set of

individual parameters

Names (identifies) of input and output ports

Data formats and types

Functional parameters

Visual parameters

PD Stefan Bosse - AFEML - Module DFG: WorkBook, WorkShell, and Dataflow Graphs - Machine learning

9 / 26

WorkBook

The WorkBook is a Web browser application consisting of HTML/CSS

content and JavaScript code.

The WorkBook can be executed in any Web browser or using node-

webkit (nwjs)

The WorkBook program flow is structured in snippets:

Code snippets

Text snippets

Table and form snippets

...

A WorkBook project consists of a sequence of snippets, code, and

data.

PD Stefan Bosse - AFEML - Module DFG: WorkBook, WorkShell, and Dataflow Graphs - WorkBook

10 / 26

WorkBook

There is a main button toolbar providing the core operations to compose,

control, and exchange WorkBook projects (JSON data):

PD Stefan Bosse - AFEML - Module DFG: WorkBook, WorkShell, and Dataflow Graphs - WorkBook

11 / 26

Code Snippets

A code snippet is initially executed in the main JS loop. A code snippet

consists basically of a code editor and an output console.

If a code snippet performs long computations, the GUI is maybe not

reactive!

A code snippet should use only local variables.

Local variables can be exported to a shared context (shared among

code snippets)

Shared context variables can be improted

There are different fields and buttons in a code snippet providing

specific operations

Hiding/Showing code snippets (full, editor, console)

PD Stefan Bosse - AFEML - Module DFG: WorkBook, WorkShell, and Dataflow Graphs - Code Snippets

12 / 26

Code Snippets

Fig. 2. Control of a code snippet

PD Stefan Bosse - AFEML - Module DFG: WorkBook, WorkShell, and Dataflow Graphs - Code Snippets

13 / 26

Code Snippets

A code snippet support to display modes:

1. Editor + Console

2. Overlay control + Console

To enable overlay mode, open the set-up menu and enter a value

≠ "false" in the overlay field (e.g., 1 or true) and flip the display

mode with the field in the lower left corner (see previous figure).

The overlay view contains three basic buttions (Run code, stop

backrgound tasks, and clear console) on the left side, import and export

fields, and an optional parameter table on the right side.

PD Stefan Bosse - AFEML - Module DFG: WorkBook, WorkShell, and Dataflow Graphs - Code Snippets

14 / 26

Code Snippets

Parameter Tables

A parameter table consists of key-value rows. The value can be changed

by clicking in the cell. By right clicking a context menu can be opened.

Parameters are defined in the code by using a non-standard

parameter statement. Any value type can be added, and choice lists

(via right click context menu) are supported by a second underscore

parameter providing the choices.

Parameters can be accessed as free variables (e.g., p1 in the following

example).

Parameters can be changed by accessing the parameter object.

Parameter values are saved!

An event handler for parameter changes can be installed (see

example)

PD Stefan Bosse - AFEML - Module DFG: WorkBook, WorkShell, and Dataflow Graphs - Code Snippets

15 / 26

Code Snippets

parameter { p1:'v1', _p1:['v1','v2','v3'], p2:0, p3:{a:1,b:2} }
...
parameter.p2=100;
parameter._on = (key,val) => { print(key+' changed:'+val }
if (p1=='v1') { .. }

Each time a parameter was changed (overlay mode activated and

visible), the event handler will be called. The changed parameter can

be forwarded to other functions.

The right-click context of each editable cell menu provides value

choice lists, a generic text editor for comfortable editing of cell

content, and a filesystem explorer to include file paths.

PD Stefan Bosse - AFEML - Module DFG: WorkBook, WorkShell, and Dataflow Graphs - Code Snippets

16 / 26

Code Snippets

Import and Export

 Parameter setting, import, and export statements in code

snippets are not valid JS syntax (proprietary)!

import { a,b,c,d ..}
var e,f,g,h,..

export { e,f,g,h,.. }

PD Stefan Bosse - AFEML - Module DFG: WorkBook, WorkShell, and Dataflow Graphs - Code Snippets

17 / 26

Class Library

To provide easy anc convenient access to nuemrical and ML modules,

there is a class library providing:

There are pre-configured node classes for data sources, data

transformation, data display, and ML (and many more)

Node constructors of a class library can be generate dby opening the

library form (in the editor button bar)

After node set-up, code is generated in the current selected code

snippet creating an instantiated object and updating or creating

import and parameter statements

Commonly, the node objects are nodes of a Dataflow Graph

PD Stefan Bosse - AFEML - Module DFG: WorkBook, WorkShell, and Dataflow Graphs - Class Library

18 / 26

Dataflow Graphs (DFG)

Data1sel y

init read

info

Action1
Load Data ev

Split1x
train

test

Print1x

DataTransform1x
x

y

DataTransform2x
x

y

Print2x

MLModelParam1 param

MLModel1

params

train

test

pred status

info

y

train testpredict

info status

Print3x

Action2
Train ev

Action3
Test (test) ev

Action4
Test (train) ev

DataFlow1 gra

graph plot

Fig. 3. Example of a DFG composed of nodes generated by the class library

PD Stefan Bosse - AFEML - Module DFG: WorkBook, WorkShell, and Dataflow Graphs - Dataflow Graphs (DFG)

19 / 26

DFG Nodes

Actions

Actions provides (parameterizable) button events. The button event (via

node output or action callback handler) can be connected to other nodes

triggering the execution of a node method (normally preceded with a "~"

character to avoid ambiguities with input port names)

import { Action, dataNode }
var actionLoadData = new Action({
 "label": "Load Data",
 "action": () => {
 status('Loading data table ...')
 },
 arguments:['*'],
})
actionLoadData.output(dataNode,'~read')
// === dataNode.read.apply(dataNode,arguments) == .read('*')

PD Stefan Bosse - AFEML - Module DFG: WorkBook, WorkShell, and Dataflow Graphs - DFG Nodes

20 / 26

DFG Nodes

Data Source

Currently only SQL access via sqld RPC is provided.

import {Data}
var data = new Data("sql",{
 "url": "localhost:9999",
 "database": "Iris",
 "table": "iris1"
})
await data.init()
status(inspect(await data.info()))
// data.read("*",index)
// data.input("*",index)
// data.output(node)

PD Stefan Bosse - AFEML - Module DFG: WorkBook, WorkShell, and Dataflow Graphs - DFG Nodes

21 / 26

DFG Nodes

Data Channels

DFG nodes can be connected by (hidden) channels (uni-directional)

A channel between an output port of node A connected to an input

port of node B is created by calling the output method from node A:

nodeA.output(nodeB,xindex?,yindex?)

The optional xindex argument selects the input port of the destination

node B

The optional yindex argument selects the output port of the source

node A

If A and B have only one output and input port the index selectors can

be omitted.

PD Stefan Bosse - AFEML - Module DFG: WorkBook, WorkShell, and Dataflow Graphs - DFG Nodes

22 / 26

DFG Nodes

Data Formats and Types

Data can be represented in different formats (data types). Assuming data

tables (columns represent the input feature and output target variables,

rows represent different samples), there are two major formats:

[[]]
Array tables (arrays of arrays). Each row of the outer table array is an

array containing values of the feature and target variables. Each

column entry is accessed by a numeric index (starting with 0).

[{}]
Record tables (arrays of records). Each row of the outer table array is a

record containing values of the feature and target variables. Each

column entry is accessed by their attribute name.

PD Stefan Bosse - AFEML - Module DFG: WorkBook, WorkShell, and Dataflow Graphs - DFG Nodes

23 / 26

DFG Nodes

Data Splitter

A data splitter is used to create randomly selected partitions from the full

data set, e.g., a data table. In ML, there is commonly a training set and a

test set. The training set is only used for the model training process, the

test set for evaluation of the model.

import {Split,dataNode}
parameter {ratio:[0.5,0.5]}
var splitData = new Split({
 "input": "[{}]",
 "outputs": [
 "train",
 "test"
],
 // "ratio": [0.5,0.5],
 "random": true,
 parameter:parameter,
})
dataNode.output(splitData)

PD Stefan Bosse - AFEML - Module DFG: WorkBook, WorkShell, and Dataflow Graphs - DFG Nodes

24 / 26

DFG Nodes

Data Transformation

Data transformation is used to convert between data formats and to

apply normalization/scaling (optionally).

import {splitData, DataTransform, Print}
var datatransformTrain = new DataTransform({
 "input": "[{}]",
 "output": "{x:[[]],y:[]}",
 "attributes":["length","width","petal_length","petal_width"],
 "targets":["species"],
 "inputs": [
 "x"
],
 "outputs": [
 "x",
 "y"
],
 "filter": (a) => { return a }
})
splitData.output(datatransformTrain,null,'train')

PD Stefan Bosse - AFEML - Module DFG: WorkBook, WorkShell, and Dataflow Graphs - DFG Nodes

25 / 26

DFG Nodes

ML Model Parameters

An ML model and its algorithms are parametrized. There are static and

dynamic parameters. Static parameters define the structure of the model

(e.g., layer of an ANN or the polynom degree of a function, or optimization

parameters like the learning rate), and dynamic parameters are those

that are optimized by the trainer algorithm. Parameters are set using a

editable table and forwarded to the ML model implementation as data.

import {MLModelParam,mlmodelDT}
parameter {
 features:["length","width"," petal_length","petal_width"],
 target:["species"],
 algorithm:"id3"}
var mlparamDT = new MLModelParam("c45",{
 "parameter": parameter,
 "display": false,
 "label": "C45/ID3"
})
mlparamDT.output(mlmodelDT,'params')

PD Stefan Bosse - AFEML - Module DFG: WorkBook, WorkShell, and Dataflow Graphs - DFG Nodes

26 / 26

