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Image Feature Extraction and Marking

In this module we learn the basic workflow of image processing consisting of:

1. Image feature marking: Image → Image

Cellular Automata

Multiagent Systems

Convolution and Convolutional Filtering

CNN Pixel Classifier

2. Image feature clustering (Point list → List of point lists)

Density-based Clustering

3. Geometric processing of point clouds (Point list → Point list)

Hull Computation
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Cellular Automata and Image Processing

 How can we apply algorithms to image data?
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Cellular Automata and Image Processing

 How can we apply algorithms to image data?

 Relation between Images and Cellular Automata - local versa global state

processing

 From local to global state using Point Clustering and Polygon Hulls

 Kernel-based Transformations and Convolutional Neural Networks!
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Cellular Automaton

A cellular automaton (CA) is basically an active (functional) matrix

Applications:

Analysis and exploration of complex space-time dynamics and of the behavior of

dynamical systems

Image transformations (state-less single-step and state-based/iterative)

Feature Analysis (Extraction, Amplification)

Parallel computation model!
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Cellular Automaton

Basic assumption:

Complex phenomena are the result of the collective dynamics of a very large

number of parts obeying simple rules
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Cellular Automaton

We want to define the simplest nontrivial model of a cellular system. We base our model on

the following concepts:

Cell and cellular space

Neighborhood (local interaction)

Cell state

Transition rule

We do not model all the details and characteristics of biological multicellular organisms

but we obtain simple models where many interesting global and local phenomena can be

observed.
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[Floreano et al.]

Cellular Space

The cellular space constructs the cell network featuring

Dimension

Size

Neighbourhood
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Cellular Automaton

A cellular automaton (CA) consists of a set of state-based cells CA={c1 ,c2 ,..,cn}.

Each cell i has a number of cell variables {x1 ,..,xk} i

The variables define the data state S: S(z i)=S i={x1 ,..,xk}

The next state of the cells is calculated via an activity function Act.

The state transition of a cell usually takes place in the activity function, optionally

prepared by before (pre) or after (post) functions.
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Scheduling

A CA is a parallel computational architecture. All cell state transitions can be computed

in parallel at the same time.

But CA processing by generic computers requires a (semi-) sequential algorithm to

perform cell state transitions ⇒ CA simulation with a scheduler

In a parallel system the following formula is valid for each cell (①right hand side, ②left

hand side):

Si(t + 1) = Act(Si(t),{Sj(t)|j ≠ i and |j∣ ≤ R})

Sequential computation would modify right hand side input before used!

Therefore, the old state of cells must be saved before the new state is computed!
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A scheduler processes the individual calculation functions of all cells sequentially in

three phases:

1. before: ∀ cells do pre(S)

2. activity: ∀ cells do Act(S)

3. after: ∀ cells do post(S)

pre(S) : Si → Si,0

Act(S) : Si,0 × Σ → Si

post(S) : Si → Si

with Σ as the state of neighbourhood cells (or global state in general):

Σ(R)
i

= {Sj|j ≠ i and |j∣ ≤ R}
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Architecture and basic principle

The Cellular Automaton is a simulation tool that represents an artificial two-dimensional

world of entities!

For visualization, each cell gets a color from a defined color palette
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Cell States

There is a

Data State

Defined by the set of all cell states (variables), visible

Control State

The cell activation (update) sequence, hidden (Scheduler)

Typically, the data state can be compsoed of:

Input space X, e.g., a mapping of image pixels on cells 1:1

Intermediate hidden states T, i.e., auxiliary and temporary variables, e.g.,

t=x;x=y,y=t

Output space Y, e.g., mapping of cell states on an output image (pixels)
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Cell Neighbourhood

Informally, it is the set of cells that can influence directly a given cell

In homogeneous cellular models it has the same shape for all cells

Neighbourhood defined some kind of communication (data transfer, but w/o

synchronisation)

Moore

Moore neighbourhood is a squared region around a center cell position with a radius R.

Neumann

Neumann neighbourhood is an approximated "circular" region around a center cell

position with a radius R. R=1 neighbourhood defines only the direct neighbours North,

South, West, East.
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[Floreano et al.]

Fig. 2. Comparison of Moore and Neumann neighbourhood in different space dimensions
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Cell State Transitions

The value of the state of each cell belong to a finite set, whose elements are commonly

numbers.

The value of the state is often represented by cell colors. A color function maps cell

states on colors (from a palette)

There can be a special quiescent state s0.

The transition rule is the fundamental element of the CA.

It must specify the new state corresponding to each possible configuration of states of

the cells in the neighborhood.
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[Floreano et al.]

Fig. 3. A transition rule maps states of neighbouring cells on new cell states. Cell states are visualized by colors.
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[Floreano et al.]


Cell updates by transition rules modify the cell states over (discrete) time. In order

to start with the updating of the cells of the CA we must specify the initial state of

the cells (initial conditions or seed)
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Image processing with CA

Fig. 4. An input image is mapped 1:1 on a cell matrix. The CA activation (iteratively) modifies the state of the cells,

finally mapped 1:1 on an output (feature) image.
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Kernel-based Transformations

Convolution or folding is a linear operation applied to each CA cell → Linear and state-

less CA transition rules

Common kernel-based transformations:

Denoising

Intensity gradient

Edge detection / amplification

A kernel-based transformation produces always a linear output:

I ⋆(x, y) = ∑
i

∑
j

I(x − i + a, y − j + b)k(i, j)

with k: kernal/folding matrix, a,b: index of center point of folding matrix k
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 Most kernel-based edge and gradient computations are sensitive in a specific

direction (axis).

E.g., there are two Sobel edge filter kernel, one for the x-, and one for the y-axis

sensitive, finally combined:
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Iterative Transformations

Kernel-based transformations usually terminates after one step, except if the input is the

output of the previous update phase!

In iterative transformations, the input of the next update phase is the output from the last

(or the initial seed image data)
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Edge Detection with CA

For edge detection of intensity images, some approaches first convert the intensity images

into binary ones, and then evolve two-state cellular automata using specific state transition

rules to determine edge pixels, while the others directly update pixel states based on the

relationship of the central pixel with its neighbourhood, mostly a 1-ring von Neumann or

Moore neighbourhood.

Popovici et al. proposed an edge detection approach based on the state differences between

the central pixel and the pixels in its von Neumann neighbourhood. If all the absolute state

differences are less than a threshold ε, then the state of the central pixel becomes 0,

otherwise it remains unaltered.
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Edge Detection with CA

The rule can be formulated as:

s+
i = {

0 ∣∣sj − si∣∣ < δ,∀j ∈ Ni

si otherwise

where s and s
+
 are the current and the updated states of the central cell i, N i  is the von

Neumann neighbourhood of the cell c, and s j  is the current state value of the cell j in N i .

In the case of feature marking, the conditional expression || < δ can be applied to other

input variables (input image), and the state s represents a marked feature count only. But

in this case it is a one-step update.
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Edge Detection with CA

Wongthanavasu and Sadananda proposed a conditional rule to update the cellular state as:

s+
i = {

si si < (smax − smin)

smax − smin otherwise

smax = max{sj∣j ∈ Ni}, smin = min{sj∣j ∈ Ni}

where smax  and smin  are the maximum and minimum states, respectively, in the von

Neumann neighbourhood N i  of the central cell i.
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Agent-based Image Processing: Feature Marking

Lui proposed a similar approach of neighbourhood exploration for feature marking in mages

using mobile agents.

In contrast to Ca cells, the state of an agent is not fixed to a specific position.

There are explorations agents with the following behaviour:

Replication. If the agent finds a feature at the current position, it stays (or increasing

the feature count), then replicate a specific number r of child agents that migrate to a

neighboruing cell (randomly chosen).

Diffusion. If the agent do not find a feature, it migrates to neighboruing cell

(randomly chosen).

The number of diffusions and hops is limited.

At each new place the feature detection starts again.
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Conditional expression for feature detection:

s+
i = si + {

1 (∑ ∣∣vj − vi∣∣ < δ,∀j ∈ Ni) ∈ [ϵ1, ϵ2]

0 otherwise

with v as the input pixel intensity and s as the feature marking count.
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CA Implementation of FM-MAS

state : { input:0, output:0, weight:1, deltaweight:0 },
activity : function (x,y) {
 // neighbors: ordering [NW,N,NW,W,E,SW,S,SE]
 var countdn = this.ask(this.neighbors, 'absdiffcount', 'input',this.delta,'<='),
     mark  = countdn>=this.eps1 && countdn <= this.eps2;
 if (mark) {
   this.output += this.weight;
   // simulate new agent replications on heighbor nodes by increasing weight
   for (var i=0;i<this.replicate*this.weight;i++) {
     var delta = [0,0];
     while (delta[0]==0 && delta[1]==0) 
       delta=[Math.random.select([-1,0,1]),Math.random.select([-1,0,1])];
     this.set(delta,'deltaweight',this.get(delta,'deltaweight')+1);
   }
  } else if (this.weight>0) {
    this.deltaweight--;
    // simulate aagent diffusion to heighbor node by increasing weight
    var delta = [0,0];
    while (delta[0]==0 && delta[1]==0) 
      delta=[Math.random.select([-1,0,1]),Math.random.select([-1,0,1])];
    this.set(delta,'deltaweight',this.get(delta,'deltaweight')+1);
  }
},
after : function (x,y) {
  this.weight += this.deltaweight;
  this.deltaweight=0; 
},
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Learning CA

 Which transition rules leads to a specific (global) emergent behaviour, e.g., edge

detection?
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Learning CA

 Which transition rules leads to a specific (global) emergent behaviour, e.g., edge

detection?

 Besides classical folding kernels, the answer is unknown.
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Learning CA

 Which transition rules leads to a specific (global) emergent behaviour, e.g., edge

detection?

 Besides classical folding kernels, the answer is unknown.

 Solution: Learn the rules, i.e., the kernel matrix! E.g., by using evolutinary and

genetic algorithms.
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Density-based Pointcloud Clustering DBSCAN

The output of the CA is an image with pixels representing point-wise features

But point clouds are still high-dimensioal

Dimensionality reduction by finding groups of points close together ⇒ Clustering

Density-based spatial clustering of applications with noise (DBSCAN) is a well-known data

clustering algorithm that is commonly used in data mining and machine learning.
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Algorithm

Based on a set of points (let’s think in a bidimensional space as exemplified in the

figure), DBSCAN groups together points that are close to each other based on a distance

measurement (usually Euclidean distance) and a minimum number of points.

It also marks as outliers the points that are in low-density regions.

Input

List of all point coordinates, can be pre-clustered in independent lists if the point belong

to different classes

Output

List of point index lists with respect to the original input list. Each sub-list is a cluster

group.
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[https://www.kdnuggets.com/2020/04/dbscan-clustering-algorithm-machine-learning.html]

Fig. 5. Points: Core - This is a point that has at least m points within distance n from itself. Border - This is a point

that has at least one core point at a distance n. Noise - This is a point that is neither a Core nor a Border. And it has

less than m points within distance n from itself.

PD Stefan Bosse - AFEML - Module C: Cellular Automata and Image Processing - Density-based Pointcloud Clustering DBSCAN

37 / 56

https://www.kdnuggets.com/2020/04/dbscan-clustering-algorithm-machine-learning.html


1. The algorithm proceeds by arbitrarily picking up a point in the dataset (until all

points have been visited).

2. If there are at least ‘minPoint’ points within a radius of ‘ε’ to the point then we

consider all these points to be part of the same cluster.

3. The clusters are then expanded by recursively repeating the neighborhood

calculation for each neighboring point
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[https://towardsdatascience.com/how-dbscan-works-and-why-should-i-use-it-443b4a191c80]

Parameters

The DBSCAN algorithm basically requires 2 parameters:

eps

specifies how close points should be to each other to be considered a part of a cluster. It

means that if the distance between two points is lower or equal to this value (eps), these

points are considered neighbors.

minPoints

the minimum number of points to form a dense region. For example, if we set the

minPoints parameter as 5, then we need at least 5 points to form a dense region.
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Parameter estimation

The parameter estimation is a problem for every data mining task. To choose good

parameters we need to understand how they are used and have at least a basic previous

knowledge about the data set that will be used.

eps

if the eps value chosen is too small, a large part of the data will not be clustered. It will

be considered outliers because don’t satisfy the number of points to create a dense

region. On the other hand, if the value that was chosen is too high, clusters will merge

and the majority of objects will be in the same cluster. The eps should be chosen based

on the distance of the dataset (we can use a k-distance graph to find it), but in general

small eps values are preferable.
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minPoints

As a general rule, a minimum minPoints can be derived from a number of dimensions

(D) in the data set, as minPoints ≥ D + 1. Larger values are usually better for data sets

with noise and will form more significant clusters. The minimum value for the

minPoints must be 3, but the larger the data set, the larger the minPoints value that

should be chosen.
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More information:

Ester, M., Kriegel, H. P., Sander, J., & Xu, X. (1996, August). A density-based algorithm for

discovering clusters in large spatial databases with noise. In Kdd (Vol. 96, №34, pp. 226–

231).
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Polygon Hulls

Up to here, we have still point clouds, although clustered.

For, e.g., area or perimeter computation of a cluster, a (concave) polygon hull

approximation is needed (simplifying, averaging, and denoising point cloud)

Well known algorithms and software:

Graham Scan

Polylidar

 The hull may not be limited to monotonic hulls without holes and caves (mixing of

convex and concave hull segments)!
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[https://gis.stackexchange.com/questions/143821/how-to-find-the-concave-hull-for-a-cloud-of-points-in-3d-space]

A hull can be described by a list of ordered boundary points

A hull can be described by a list of pice-wise linear lines (between boundary points)

Fig. 6. The outline of a point cloud as a concave hull
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Further readings:

1. Implementation of a fast and efficient concave hull algorithm,

http://www.it.uu.se/edu/course/homepage/projektTDB/ht13/project10/Project-10-

report.pdf

PD Stefan Bosse - AFEML - Module C: Cellular Automata and Image Processing - Polygon Hulls

45 / 56

http://www.it.uu.se/edu/course/homepage/projektTDB/ht13/project10/Project-10-report.pdf


Convolutional Neural Networks

CNN are suitable for classifying different structural features in the data regardless

of location and orientation

A CNN is based on matrix algebra with convolution operations


For further reading: https://towardsdatascience.com/covolutional-neural-network-

cb0883dd6529?gi=521747216671; G. Paaß, Artificial Intelligence, What is behind

the technology of the future?, Jumper

Well-known software framework for the browser: convnet.js

https://cs.stanford.edu/people/karpathy/convnetjs
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[20]

Folding Operation

Fig. 7. First calculation step (left) and second calculation step (right) in the convolution layer for a shifted small area

of the input matrix. The kernel is "pushed" successively over the entire input matrix and the result matrix is filled
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[20]

Convolutional Neural Networks

A CNN is composed of different layers:

Convolution layers

Merging (pooling) layers

Output by classification layers (softmax)

Fig. 8. A convolution layer contains k kernels and k result matrices, which are each combined into tensors
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[https://towardsdatascience.com]

Fig. 9. General construction of a CNN with alternating layers of convolutions, merging, and finally binary

classification
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[https://towardsdatascience.com]

Fig. 10. Depending on the number of structural features, there may be a large number of the following folding and

merging layers
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CNN Point Classifier

As with the CA approach, a CNN can be used to predict feature output images ⇒ CNN

Image Feature Marking

The idea: A CNN is used to predict the feature class (e.g., marking of pixel belonging to

a crack shape) with a small moving segment window.

The central pixel of this segment (e.g., (10,10) in a 20 × 20 pixel segment) is the

pixel for which the CNN should predict the feature classification
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Fig. 11. Iterative image pixel feature marking by a moving segment window

Training is supervised with labelled input data.

Training and prediction poses high computational complexity.

The CNN can be simple, e.g.: two convoultional layers with 8 and 16 filter, respectively,

one soft-max layer. But even such a simple CNN has about 10000 parameters!
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Training

We need a set of labelled images. The regions with a feature are described with closed

polygon paths. For each input image of size w × h, we get a feature map image of size w

× h pixels. A randomly selected and shuffled segment set is used for training (created in

advance). Segmentation can be strided (stride=Δx,Δy)

Prediction

The model is applied to all pixels of an input image with optional striding. The result is a

feature map images of size w/stride × h/stride pixels.
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Example

Fig. 12. Feature marking with a trained CNN pixel classifier of pores in X-ray images (Aluminum diecasted plates,

here synthetic X-ray images simulated with gVXR)
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Summary

In this module we learnrd the basic workflow of feature extraction with image processing consisting of:

1. Image feature marking: Image → Image

Cellular Automata

Multiagent Systems

Convolution and Convolutional Filtering

CNN Pixel Classifier

2. Image feature clustering (Point list → List of point lists)

Density-based Clustering

3. Geometric processing of point clouds (Point list → Point list)

Hull Computation

4. Finally we can compute aggregate paramters (from hull):

Mass of Center (MoC)

Geometric model fit (e.g., ellipse or ellipsoid fit), ellipse parameters

Area, Volume
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Further Reading

1. Bio-Inspired Artificial Intelligence: Theories, Methods, and Technologies by Dario

Floreano and Claudio Mattiussi, MIT Press
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