Prof. Dr. Stefan Bosse
University of Siegen - Dept. Maschinenbau
University of Koblenz - Dept. Computer Science
Stefan Bosse - AFEML - Module 0: About the Lecturer -
Stefan Bosse - AFEML - Module 0: About the Lecturer - Bremen
2016: Habilitation mit der Venia Legendi für die Informatik
Stefan Bosse - AFEML - Module 0: About the Lecturer - Bremen
2016: Habilitation mit der Venia Legendi für die Informatik
2016 bis 2024: Privatdozent Fachbereich Informatik, Universität Bremen
Stefan Bosse - AFEML - Module 0: About the Lecturer - Bremen
2016: Habilitation mit der Venia Legendi für die Informatik
2016 bis 2024: Privatdozent Fachbereich Informatik, Universität Bremen
2018-2019: Vertretungsprofessur Praktische Informatik und Lehrbeauftragter in der Fakultät Informatik, Universität Koblenz-Landau
Stefan Bosse - AFEML - Module 0: About the Lecturer - Bremen
2016: Habilitation mit der Venia Legendi für die Informatik
2016 bis 2024: Privatdozent Fachbereich Informatik, Universität Bremen
2018-2019: Vertretungsprofessur Praktische Informatik und Lehrbeauftragter in der Fakultät Informatik, Universität Koblenz-Landau
2020-heute: Wissenschaftlicher Leiter und Projektleiter in der transregionalen DFG Forschungsgruppe 3022, Automatische Schadensdiagnostik mit geführten Wellen in Laminaten
Stefan Bosse - AFEML - Module 0: About the Lecturer - Bremen
2016: Habilitation mit der Venia Legendi für die Informatik
2016 bis 2024: Privatdozent Fachbereich Informatik, Universität Bremen
2018-2019: Vertretungsprofessur Praktische Informatik und Lehrbeauftragter in der Fakultät Informatik, Universität Koblenz-Landau
2020-heute: Wissenschaftlicher Leiter und Projektleiter in der transregionalen DFG Forschungsgruppe 3022, Automatische Schadensdiagnostik mit geführten Wellen in Laminaten
2022-heute: Wissenschaftlicher Leiter und Projektleiter in der U Bremen Research Alliance AI Center for Health Care (Add. Fertigung und Prozessoptimierung)
Stefan Bosse - AFEML - Module 0: About the Lecturer - Koblenz
2025-heute: Professur Praktische Informatik im Fachbereich Informatik, Universität Koblenz
Stefan Bosse - AFEML - Module 0: About the Lecturer - Koblenz
2025-heute: Professur Praktische Informatik im Fachbereich Informatik, Universität Koblenz
Themenschwerpunkte Verteilte Künstliche Intelligenz, Betriebssysteme, Technische Systeme
Stefan Bosse - AFEML - Module 0: About the Lecturer - Siegen
Seit 2022: Lehrbeauftragter im Fachbereich Msschinenbau, Lehrstuhl für Materialkunde und Werkstofftechnik, Universität Siegen
Stefan Bosse - AFEML - Module 0: About the Lecturer - Siegen
Seit 2022: Lehrbeauftragter im Fachbereich Msschinenbau, Lehrstuhl für Materialkunde und Werkstofftechnik, Universität Siegen
Wissenschaftliche Zusammenarbeit Bremen - Siegen - Koblenz
Stefan Bosse - AFEML - Module 0: About the Lecturer - Teaching and research topics
Stefan Bosse - AFEML - Module 0: About the Lecturer - My Research Topics
Sensor Data Sciences
Stefan Bosse - AFEML - Module 0: About the Lecturer - Research topics
Distributed and Applied AI
Stefan Bosse - AFEML - Module 0: About the Lecturer - Research topics
Simulation
Stefan Bosse - AFEML - Module 0: About the Lecturer - Research topics
Lecture and Winter School
Prof. Dr. Stefan Bosse
University of Siegen - Dept. Maschinenbau
University of Koblenz - Dept. Computer Science
Stefan Bosse - AFEML - Module 0: Introduction - Research topics
Stefan Bosse - AFEML - Module 0: Introduction - Target Audience
Student curriculum module area: Bachelor and Master Specialization
In addition to lecture students, scientific workers and thesis students are invited to participate to the winter school.
Stefan Bosse - AFEML - Module 0: Introduction - Main topics in this course
Metrics, taxonomies, methods, algorithms of ...
Stefan Bosse - AFEML - Module 0: Introduction - Main topics in this course
Stefan Bosse - AFEML - Module 0: Introduction - Special topics in this course
X-ray Radiography and X-ray Tomography
From physical measurements to material structure analysis
Image processing (i.e., for 2D and 3D data volumes) is discussed with practical lessons using real-world data
Tomography fundamentals are introduced with practical applications and lessons using real-world data (including data from Siegen's Zeiss Xradia MicroCT device)
Microscopy Imaging
Stefan Bosse - AFEML - Module 0: Introduction - Fields of Application
Your application?
Stefan Bosse - AFEML - Module 0: Introduction - Organisation
Introduction to basic methods and algorithms with simple "sandbox" tutorials and exercises (partially home/office work)
Discussion of scientific application cases and available data
Application of methods and algorithms to different complex application cases
Discussions and presentation of results
Stefan Bosse - AFEML - Module 0: Introduction - Data
What kind of data we have to process?
f(^D,→M):^D×→M→{^R^Fg(^R):^R→^F
F is commonly derived from intermediate feature selected data R, not from raw data D
Stefan Bosse - AFEML - Module 0: Introduction - Data
Stefan Bosse - AFEML - Module 0: Introduction - Data
Stefan Bosse - AFEML - Module 0: Introduction - Data
Your data?
Stefan Bosse - AFEML - Module 0: Introduction - Data
Stefan Bosse - AFEML - Module 0: Introduction - Data Sources and Storage
Storage
Format and Coding
Stefan Bosse - AFEML - Module 0: Introduction - Data Examples
Anomaly detection in 3D X-ray CT image volumes (composite materials with defects)
Materials 2022, 15(13), 4645; https://doi.org/10.3390/ma15134645 
Stefan Bosse - AFEML - Module 0: Introduction - Data Examples
Breakage prediction with tensile test data (metal probes)
SciForum ECSA 2020, https://doi.org/10.3390/ecsa-7-08279
Stefan Bosse - AFEML - Module 0: Introduction - Data Examples
Damage detection with Guided Ultrasonic Waves (composite material with pseudo defects)
SysInt 2022, DOI: 10.1007/978-3-031-16281-7_35
Stefan Bosse - AFEML - Module 0: Introduction - Data Examples
Porosity analysis with metallurgical microphotographs of sliced surfaces (additive manufacturing)
Materials 2022, 15(20), 7090; https://doi.org/10.3390/ma15207090
Stefan Bosse - AFEML - Module 0: Introduction - Data Examples
Feature marking of micro cracks and crack propagation of metal probes after applying stress
AG Brandt, U Siegen
Stefan Bosse - AFEML - Module 0: Introduction - Features
A feature is any kind of aggregated or condensed information from data.
The output of a ML model is typically a categorical or metric feature variable.
Stefan Bosse - AFEML - Module 0: Introduction - Features
There are input and output features.
Examples: Statistical features of time data series (average, deviation, skewness, ..), frequency spectrum, ROI, wavelet transformation coefficients.
Stefan Bosse - AFEML - Module 0: Introduction - Features
Your features?
Stefan Bosse - AFEML - Module 0: Introduction - Methods and Algorithms
A typical "Data Mining" work flow consists of different stages:
Different data processing methods and algorithms are used in the different stages.
Stefan Bosse - AFEML - Module 0: Introduction - Methods and Algorithms
Stefan Bosse - AFEML - Module 0: Introduction - Methods and Algorithms
Stefan Bosse - AFEML - Module 0: Introduction - Methods and Algorithms
In general, data processing and machine learning is a functional composition.
ML searches mapping functions M=F(X): X → Y.
ML is commonly an approximation of a hypothesis model H ≈ F of an unknown real (world) model M
There are infinite approximations (hypothesis models), the so called model space
Stefan Bosse - AFEML - Module 0: Introduction - Methods and Algorithms
F(X,P):X×P→YargminP(Err)Err=|H−M|,H=F
F(X,P)S:X×P→YP={p0,p1,..,pS}Fi=p0+∑ipixi
Stefan Bosse - AFEML - Module 0: Introduction - Methods and Algorithms
Stefan Bosse - AFEML - Module 0: Introduction - Methods and Algorithms
Your methods?
Stefan Bosse - AFEML - Module 0: Introduction - Software
The Web Browser is the Laboratory!
R+ WorkBook (fully self-contained HTML file) for the Web browser or node-webkit)
R+ WorkShell (node.js worker, terminal console, optional)
SQLite3 Database (node.js)
wex (local access to file system)
Additional plug-ins (for WorkBook and WorkShell)
Notebook (fully self-contained digital lessons for the Web Browser) with R+ and all packahes.
Stefan Bosse - AFEML - Module 0: Introduction - Software
Your software?
Stefan Bosse - AFEML - Module 0: Introduction - Software Architecture
Work flow architecture
Stefan Bosse - AFEML - Module 0: Introduction - Toolbox
... andy many more ...
Stefan Bosse - AFEML - Module 0: Introduction - R+
R+ is an R dialect with a run-time environment entirely programmed in JavaScript and hence usable in any Web browser ⇒ R-JS Transpiler
On one hand, R+ extends the core R syntax (e.g., simplified list, vector, and matrix constructors), on the other hand it implements only a sub-set of R (packages, functions).
Stefan Bosse - AFEML - Module 0: Introduction - R+
KISS: Keep it simple and safe and focus on algorithms and methods, not programming!
use math,plotm = matrix(runif(100),10,10)plot(m,auto.scale=TRUE)
Stefan Bosse - AFEML - Module 0: Introduction - Lessons and Exercises